Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T21:32:48.264Z Has data issue: false hasContentIssue false

Genetic aspects of Wood's lactation curve parameters in Jersey crossbred cattle using Bayesian approach

Published online by Cambridge University Press:  12 January 2024

Mokidur Rahman
Affiliation:
ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, 741235, West Bengal, India
Hasan Baneh
Affiliation:
Project Center for Agro Technologies, Skolkovo Institute of Science and Technology (Skoltech), Moscow 121205, Russia
Indrajit Gayari
Affiliation:
ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, 741235, West Bengal, India
Muthupalani Karunakaran
Affiliation:
ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, 741235, West Bengal, India
Thiruvothur Venkatesan Raja
Affiliation:
ICAR- Central Institute for Research on Cattle, Grass Farm Road, Meerut Cantt, Meerut, Uttar Pradesh 250 001, India
Sitangsu Mohan Deb
Affiliation:
ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, 741235, West Bengal, India
Ajoy Mandal*
Affiliation:
ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, 741235, West Bengal, India
*
Corresponding author: Ajoy Mandal; Email: ajoymandal@rediffmail.com

Abstract

The study was undertaken to estimate the genetic parameters of lactation curve parameters of Wood's function in Jersey crossbred cattle using the Bayesian approach. Data on 33,906 fortnightly test day milk yields of 1,718 lactation records of Jersey crossbred cows, maintained at the ICAR-National Dairy Research Institute in West Bengal, were collected over a period of 40 years. The lactation curve parameters including ‘a’ (initial milk yield after calving), ‘b’ (ascending slope up to peak yield) and ‘c’ (descending slope after peak yield) and lactation curve traits, peak yield (ymax), time of peak yield (tmax) and persistency of milk yield (P) of individual cow for each lactation were estimated using the incomplete gamma function (Wood's model) by fitting the Gauss–Newton algorithm as an iteration method using PROC NLIN procedure of SAS 9.3. Variance components and genetic parameters of lactation curve parameters/traits were estimated by a repeatability animal model using the Bayesian approach. Estimates of heritabilities were found to be 0.18 ± 0.05, 0.09 ± 0.03 and 0.11 ± 0.04 for parameters ‘a’, ‘b’ and ‘c’, respectively and 0.24 ± 0.05, 0.12 ± 0.04, and 0.15 ± 0.05 for ymax, tmax and P, respectively. Repeatability estimates were 0.31 ± 0.03, 0.21 ± 0.04 and 0.30 ± 0.04 for parameters ‘a’, ‘b’ and ‘c’ respectively and 0.39 ± 0.03, 0.24 ± 0.03 and 0.37 ± 0.03 for ymax, tmax and p, respectively. Genetic correlations among lactation curve parameters/traits ranged from −0.75 to 0.95. Existence of genetic correlations among lactation curve parameters/traits indicated substantial genetic and physiological relationships among lactation curve parameters/traits of Jersey crossbred cattle.

Type
Research Article
Copyright
Copyright © ICAR-National Dairy Research Institute, 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarrán-Portillo, B and Pollott, GE (2008) Genetic parameters derived from using a biological model of lactation on records of commercial dairy cows. Journal of Dairy Science 91, 3639–3648.Google Scholar
Aspilcueta-Borquis, RR, Di Palo, R, Araujo Neto, FR, Baldi, F, De Camargo, GMF, De Albuquerque, LG, Zicarelli, L and Tonhati, H (2010) Genetic parameter estimates for buffalo milk yield, milk quality and mozzarella production and Bayesian inference analysis of their relationships. Genetics and Molecular Research 9, 16361644.Google Scholar
Atashi, H, Moradi Sharbabak, M and Moradi Sharbabak, H (2009) Environmental factors affecting the shape components of the lactation curves in Holstein dairy cattle of Iran. Livestock Research and Rural Development 21, 60.Google Scholar
Atashi, H, Salavati, M, De Koster, J, Ehrlich, J, Crowe, M, Opsomer, G and Hostens, M (2019) Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows. Journal of Animal Breeding and Genetics 137, 292304.Google Scholar
Bakri, NE, Pieramati, C, Sarti, FM, Giovanini, S and Djemali, MN (2022) Estimates of genetic parameters and genetic trend for Wood's lactation curve traits of Tunisian Holstein–Friesian cows. Tropical Animal Health and Production 54, 19.Google Scholar
Batra, TR, Lin, CY, McAllister, AJ, Lee, AJ, Roy, GL, Vesely, JA, Wauthy, JM and Winter, KA (1987) Multi-trait estimation of genetic parameters of lactation curves in Holstein heifers. Journal of Dairy Science 70, 21052111.Google Scholar
Boujenane, I and Hilal, B (2012) Genetic and non-genetic effects for lactation curve traits in Holstein-Friesian cows. Archiv Tierzucht 55, 450457.Google Scholar
Chegini, A, Shadparvar, AA and Ghavi, HZN (2015) Genetic parameter estimates for lactation curve parameters, milk yield, age at first calving, calving interval and somatic cell count in Holstein cows. Iranian Journal of Applied Animal Science 5, 6167.Google Scholar
Farhangfar, H and Rowlinson, P (2007) Genetic analysis of woods lactation curve for Iranian Holstein heifers. Journal of Biological Sciences 7, 127135.Google Scholar
Ferris, TA, Mao, IL and Anderson, CR (1985) Selecting for lactation curve and milk yield in dairy cattle. Journal of Dairy Science 68, 14381448.CrossRefGoogle ScholarPubMed
Gama, LT, Carolino, RN, Cruz, AA and Carolino, MI (1994) Genetic parameter estimates for shape of the lactation curve in dairy cattle. Proceedings of the 5th World Congress on Genetics Applied to Livestock Productions: Guelph, Ontario, Canada 18, pp. 132135.Google Scholar
Gebreyohannes, G, Koonawootrittriron, S, Elzo, MA and Suwanasopee, T (2013) Variance components and genetic parameters for milk production and lactation pattern in an Ethiopian multibreed dairy cattle population. Asian-Australasian Journal of Animal Sciences 26, 12371246.Google Scholar
Harvey, WR (1990) User's Guide for LSMLMW PC-2 Version, mixed model least squares and maximum likelihood computer programme, Mimeograph. Columbus, OH, USA: Ohio State University Press.Google Scholar
Koloi, S and Mandal, A (2020) Genetic analysis of persistency indices of milk yield in Jersey crossbred cattle. Journal of Dairy Research 87, 330333.Google Scholar
Lopez-Ordaz, R, Castillo-Juarez, H and Montaldo, HH (2009) Genetic and phenotypic for days open and lactation curve characteristics in Holstein cows from Northern Mexico. Veterinaria Mexico 40, 344356.Google Scholar
Macciotta, NPP, Vicario, D and Cappio-Borlino, A (2005) Detection of different shapes of lactation curve for milk yield in dairy cattle by empirical mathematical models. Journal of Dairy Science 88, 11781191.Google Scholar
Misztal, I (2008) Reliable computing in estimation of variance components. Journal of Animal Breeding and Genetics 125, 363370.Google Scholar
Misztal, I, Tsuruta, S, Lourenco, D, Masuda, Y, Aguilar, I, Legarra, A and Vitezica, Z (2018) Manual for BLUPF90 family programs. University of Georgia.Google Scholar
Osorio-Arce, MM and Segura-Correa, JC (2005) Factors affecting the lactation curve of Bos taurus × Bos indicus cows in a dual-purpose system in the humid tropics of Tabasco, Mexico. Tecnica Pecuaria en Mexico 43, 127137.Google Scholar
Pangmao, S, Thomson, PC and Khatkar, MS (2022) Genetic parameters of milk and lactation curve traits of dairy cattle from research farms in Thailand. Animal Bioscience 35, 14991511.Google Scholar
Pérochon, L, Coulon, JB and Lescourret, F (1996) Modelling lactation curves of dairy cows with emphasis on individual variability. Animal Science 63, 189200.Google Scholar
Radjabalizadeh, K, Alijani, S, Gorbani, A and Farahvash, T (2022) Estimation of genetic parameters of Wood's lactation curve parameters using Bayesian and REML methods for milk production trait of Holstein dairy cattle. Journal of Applied Animal Research 50, 363368.CrossRefGoogle Scholar
Rao, MK and Sundaresan, D (1979) Influence of environment and heredity on the shape of lactation curves in Sahiwal cows. The Journal of Agricultural Science 92, 393401.Google Scholar
Rekaya, R, Caraban, MJ and Toro, MA (2000) Bayesian analysis of lactation curves of Holstein-Friesian cattle using a nonlinear model. Journal of Dairy Science 83, 26912701.Google Scholar
Rekik, B, Gara, AB, Hamouda, MB and Hammami, H (2003) Fitting lactation curves of dairy cattle in different types of herds in Tunisia. Livestock Production Science 83, 309315.Google Scholar
Rekik, B, Gara, AB and Medini, N (2006) Genetic parameters of first lactation curve traits for Holstein-Friesian cows in Tunisia. Proceedings of American Society of Animal Science Western Section 57, 67.Google Scholar
Saghanezhad, F, Atashi, H, Dadpasand, M, Zamiri, MJ and Shokri-Sangari, F (2017) Estimation of genetic parameters for lactation curve traits in Holstein dairy cows in Iran. Iranian Journal of Applied Animal Science 7, 559566.Google Scholar
SAS Institute Inc (2011) Base SAS® 9.3 Procedures Guide. Cary, NC: SAS Institute Inc.Google Scholar
Scott, TA, Yandell, B, Shaver, RD and Smith, TR (1996) Use of lactation curves for analysis of milk production data. Journal of Dairy Science 79, 18851894.Google Scholar
Tekerli, M, Akinci, Z, Dogan, I and Akcan, A (2000) Factors affecting the shape of lactation curve of Holstein cows from the Balikesir Province of Turkey. Journal of Dairy Science 83, 13811386.Google Scholar
Torshizi, ME (2016) Effects of season and age at first calving on genetic and phenotypic characteristics of lactation curve parameters in Holstein cows. Journal of Animal Science and Technology 58, 114.Google Scholar
Varona, L, Moreno, C, Cortes, LG and Altarriba, J (1998) Bayesian Analysis of Wood's lactation curve for Spanish dairy cows. Journal of Dairy Science 81, 14691478.Google Scholar
Wasike, CB, Kahi, AK and Peters, KJ (2014) Genetic relationship between lactation curve traits in the first three parities of dairy cattle. South African Journal of Animal Science 44, 245253.Google Scholar
Wood, PDP (1967) Algebraic model of the lactation curve in cattle. Nature 216, 164165.CrossRefGoogle Scholar
Wood, PDP (1976) Algebraic models of the lactation curves for milk, fat and protein production, with estimates of seasonal variation. Animal Production 22, 3540.Google Scholar
Yilmaz, I, Eyduran, E, Kaygisiz, A and Javed, K (2011) Estimates of genetic parameters for lactation shape parameters with multivariate statistical technique in Brown Swiss cattle. International Journal of Agriculture & Biology 13, 174178.Google Scholar