Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-08-29T04:48:49.118Z Has data issue: false hasContentIssue false

Heifers introduced a new subtype into a herd with persistent Staphylococcus aureus intramammary infections

Published online by Cambridge University Press:  19 May 2025

Joaquin Cicotello
Affiliation:
Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina
Nasrin Ramezanigardaloud
Affiliation:
Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
Camila Miotti
Affiliation:
Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina
Ana Inés Molineri
Affiliation:
Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina
Tom Grunert
Affiliation:
Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
Guillermo Suarez Archilla
Affiliation:
Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina
Luis Fernando Calvinho
Affiliation:
Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina
Cecilia M. Camussone*
Affiliation:
Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina
*
Corresponding author: Cecilia M. Camussone; Email: camussone.cecilia@inta.gob.ar

Abstract

This study describes the spread of intramammary infections (IMI) during the first lactation of heifers that were naturally infected with Staphylococcus aureus before parturition and introduced into a herd with a high prevalence of this organism. The heifers were monitored during their first lactation to determine potential spread and persistence of IMI and to characterize the isolates that caused IMI. Milk samples were obtained from all the cows in the lactating herd at the beginning of the study and one year later. S. aureus isolated at both these sampling times were compared with those obtained from the heifers to analyse their clonal and phylogenetic relationships, employing pulse-field gel electrophoresis (PFGE), multi-locus sequence typing and Fourier transform infrared spectroscopy. Most S. aureus isolated from mammary secretions of heifers before parturition established chronic IMI during the first lactation. PFGE typing discriminated 3 clusters that were associated with origin of isolates, number of lactations and clonal complex. Differences both in the presence and expression of genes associated with virulence determinants among the major pulsotypes infecting lactating cows and those from heifers that developed persistent IMI were detected, which are indicative of distinct adaptive capacities to generate IMI.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, KL, Lyman, R, Moury, K, Ray, D, Watson, DW and Correa, MT (2012) Molecular epidemiology of Staphylococcus aureus mastitis in dairy heifers. Journal of Dairy Science 95, 49214930.CrossRefGoogle ScholarPubMed
Bardiau, M, Caplin, J, Detilleux, J, Graber, H, Moroni, P, Taminiau, B and Mainil, JG (2016) Existence of two groups of Staphylococcus aureus strains isolated from bovine mastitis based on biofilm formation, intracellular survival, capsular profile and agr-typing. Veterinary Microbiology 185, 16.CrossRefGoogle ScholarPubMed
Brakstad, OG, Aasbakk, K and Maeland, JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology 30, 16541660.CrossRefGoogle ScholarPubMed
Buzzola, FR, Alvarez, LP, Tuchscherr, LP, Barbagelata, MS, Lattar, SM, Calvinho, L and Sordelli, DO (2007) Differential ability of capsulated and non-capsulated Staphylococcus aureus from diverse agr groups to invade mammary epithelial cells. Infection and Immunity 75, 886889.CrossRefGoogle Scholar
Calvinho, LF and Dallard, BE (2023) Staphylococcus aureus chronic intramammary infections in dairy cows: pathogen-specific characteristics. CABI Reviews. https://doi.org/10.1079/cabireviews.2023.0007CrossRefGoogle Scholar
Campos, B, Pickering, AC, Rocha, LS, Aguilar, AP, Fabres-Klein, MH, de Oliveira Mendes, TA, Fitzgerald, JR and de Oliveira Barros Ribon, A (2022) Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Veterinary Research 18, 116.CrossRefGoogle ScholarPubMed
Camussone, CM, Molineri, AI, Signorini, ML, Neder, VE, Vitulich, CA and Calvinho, LF (2020) Risk factors of S. aureus intramammary infection in pre partum dairy heifers under grazing conditions and molecular characterization of isolates from heifers and cows. Journal of Dairy Research 87, 8288.CrossRefGoogle ScholarPubMed
Camussone, C, Reidel, I, Molineri, A, Cicotello, J, Miotti, C, Suarez Archilla, G, Curti, C, Veaute, C and Calvinho, LF (2022) Efficacy of immunization with a recombinant S. aureus vaccine formulated with liposomes and ODN-CpG against natural S. aureus intramammary infections in heifers and cows. Research in Veterinary Science 145, 177187.CrossRefGoogle ScholarPubMed
Capurro, A, Aspán, A, Ericsson Unnerstad, H, Persson Waller, K and Artursson, K (2010) Identification of potential sources of Staphylococcus aureus in herds with mastitis problems. Journal of Dairy Science 93, 180191.CrossRefGoogle ScholarPubMed
Castelani, L, Silva Santos, AF, dos Santos Miranda, M, Zafalon, LF, Rodrigues Pozzi, C, Rodrigues Pozzi, C and Arcaro, J (2013) Molecular typing of mastitis-causing Staphylococcus aureus isolated from heifers and cows. Journal of Molecular Sciences 14, 43264333.CrossRefGoogle ScholarPubMed
De Vliegher, S, Fox, LK, Piepers, S, McDougall, S and Barkema, HW (2012) Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. Journal of Dairy Science 95, 10251040.CrossRefGoogle ScholarPubMed
Engler, C, Renna, MS, Beccaria, C, Silvestrini, P, Pirola, S, Pereyra, E, Baravalle, C, Camussone, C, Monecke, S, Calvinho, LF and Dallard, B (2022) Differential immune response to two Staphylococcus aureus strains with distinct adaptation genotypes after experimental intramammary infection of dairy cows. Microbial Pathogenesis 172, 105789.CrossRefGoogle ScholarPubMed
Enright, MC, Day, NP, Davies, CE, Peacock, SJ and Spratt, BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology 38, 10081015.CrossRefGoogle ScholarPubMed
FASS, Federation of Animal Sciences Societies (2010) Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd Edn. FASS, Champaign, Illinois, USA.Google Scholar
Fox, LK, Chester, ST, Hallberg, JW, Nickerson, SC, Pankey, JW and Weaver, LD (1995) Survey of intramammary infections in dairy heifers at breeding age and first parturition. Journal of Dairy Science 78, 16191628.CrossRefGoogle ScholarPubMed
Grunert, T, Wenning, M, Barbagelata, MS, Fricker, M, Sordelli, DO, Buzzola, FR and Ehling-Schulz, M (2013) Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier transform infrared spectroscopy. Journal of Clinical Microbiology 51, 22612266.CrossRefGoogle ScholarPubMed
Grunert, T, Stessl, B, Wolf, F, Sordelli, DO, Buzzola, FR and Ehling-Schulz, M (2018) Distinct phenotypic traits of Staphylococcus aureus are associated with persistent, contagious bovine intramammary infections. Scientific Reports 8, 15968.CrossRefGoogle ScholarPubMed
Haveri, M, Roslöf, A, Rantala, L and Pyörälä, S (2007) Virulence genes of bovine Staphylococcus aureus from persistent and nonpersistent intramammary infections with different clinical characteristics. Journal of Applied Microbiology 103, 9931000.CrossRefGoogle ScholarPubMed
Haveri, M, Hovinen, M, Roslöf, A and Pyörälä, S (2008) Molecular types and genetic profiles of Staphylococcus aureus strains isolated from bovine intramammary infections and extramammary sites. Journal of Clinical Microbiology 46, 37283735.CrossRefGoogle ScholarPubMed
Hoekstra, J, Zomer, AL, Rutten, VP, Benedictus, L, Stegeman, A, Spaninks, MP, Bennedsgaard, TW, Biggs, A, De Vliegher, S, Herrera, DM, Reglindis, HS, Katholm, J, Kovács, P, Krömker, V, Lequeux, G, Moroni, P, Pinho, L, Smulski, S, Supré, K, Swinkel, JM, Holmes, MA, Lam, TJGM and Koop, G (2020) Genomic analysis of European bovine Staphylococcus aureus from clinical vs. subclinical mastitis. Scientific Reports 10, 18172.CrossRefGoogle Scholar
Johler, S, Stephan, R, Althaus, D, Ehling-Schulz, M and Grunert, T (2016) High resolution subtyping of Staphylococcus aureus strains by means of Fourier transform infrared spectroscopy. Systematic and Applied Microbiology 39, 189194.CrossRefGoogle ScholarPubMed
Jolley, KA, Bray, JE and Maiden, MCJ (2018) Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research 24, 124.CrossRefGoogle Scholar
McDougal, L, Steward, C, Killgore, G, Chaitram, J, McAllister, S and Tenover, F (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. Journal of Clinical Microbiology 41, 51135120.CrossRefGoogle ScholarPubMed
Melchior, MB, van Osch, MH, Graat, RM, van Duijkeren, E, Mevius, DJ, Nielen, M, Gaastra, W and Fink-Gremmels, J (2009) Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in agr-type II strains. Veterinary Microbiology 137, 8389.CrossRefGoogle ScholarPubMed
Niedziela, DA, Murphy, MP, Grant, J, Keane, OM and Leonard, FC (2020) Clinical presentation and immune characteristics in first-lactation Holstein-Friesian cows following intramammary infection with genotypically distinct Staphylococcus aureus strains. Journal of Dairy Science 103, 84538466.CrossRefGoogle ScholarPubMed
Oliver, SP, Gonzalez, RN, Hogan, JS, Jayarao, BM and Owens, WE (2004) Microbiological Procedures for the Diagnosis of Bovine Udder Infection and Determination of Milk Quality, 4th Edn. Verona, WI, USA: National Mastitis Council.Google Scholar
Oliver, SP, Gillespie, BE, Headrick, SJ, Lewis, MJ and Dowlen, HH (2005) Prevalence, risk factors, and strategies for controlling mastitis in heifers during the periparturient period. International Journal of Applied Research in Veterinary Medicine 3, 150162.Google Scholar
Roberson, JR, Fox, LK, Hancock, OD, Gay, JM and Besser, TE (1994) Coagulase-positive Staphylococcus intramammary infections in primiparous dairy cows. Journal of Dairy Science 77, 958969.CrossRefGoogle ScholarPubMed
Rossi, B, Bonsaglia, E, Pantoja, JCF, Santos, M, Gonçalves, J, Fernandes, AJ and Rall, V (2021) Short communication: association between the accessory gene regulator (agr) group and the severity of bovine mastitis caused by Staphylococcus aureus. Journal of Dairy Science 104, 35643568.CrossRefGoogle ScholarPubMed
Schukken, YH, Bronzo, V, Locatelli, C, Pollera, C, Rota, N, Casula, A, Testa, F, Scaccabarozzi, L, March, R, Zalduendo, D, Guix, R and Moroni, P (2014) Efficacy of vaccination on Staphylococcus aureus and coagulase-negative staphylococci intramammary infection dynamics in 2 dairy herds. Journal of Dairy Science 97, 52505264.CrossRefGoogle ScholarPubMed
Sears, P, Smith, BS, English, PB, Herer, PS and Gonzalez, RN (1990) Shedding pattern of Staphylococcus aureus from bovine intramammary infections. Journal of Dairy Science 73, 27852789.CrossRefGoogle ScholarPubMed
Smith, EM, Green, LE, Medley, GF, Bird, HE, Fox, LK, Schukken, YH, Kruze, JV, Bradley, AJ, Zadoks, RN and Dowson, CG (2005) Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. Journal of Clinical Microbiology 43, 47374743.CrossRefGoogle ScholarPubMed
Thomas, A, Chothe, S, Byukusenge, M, Mathews, T, Pierre, T and Kariyawasam, S (2021) Prevalence and distribution of multilocus sequence types of Staphylococcus aureus isolated from bulk tank milk and cows with mastitis in Pennsylvania. PLoS ONE 16, e0248528.CrossRefGoogle ScholarPubMed
Vaughn, JM, Abdi, RD, Gillespie, BE and Kerro Dego, O (2020) Genetic diversity and virulence characteristics of Staphylococcus aureus isolates from cases of bovine mastitis. Microbial Pathogenesis 144, 104171.CrossRefGoogle ScholarPubMed
Yebra, G, Harling-Lee, JD, Lycett, S, Aarestrup, FM, Larsen, G, Cavaco, LM, Seo, KS, Abraham, S, Norris, JM, Schmidt, T, Ehlers, MM, Sordelli, DO, Buzzola, FR, Gebreyes, WA, Gonçalves, JL, Dos Santos, MV, Zakaria, Z, Rall, VLM, Keane, OM, Niedziela, DA, Paterson, GK, Holmes, MA, Freeman, TC and Fitzgerald, JR (2022) Multiclonal human origin and global expansion of an endemic bacterial pathogen of livestock. Proceedings of the National Academy of Sciences 119, e2211217119.CrossRefGoogle ScholarPubMed
Zadoks, RN, Middleton, JR, McDougall, S, Katholm, J and Schukken, YH (2011) Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. Journal of Mammary Gland Biology and Neoplasia 16, 357372.CrossRefGoogle ScholarPubMed
Zecconi, A, Calvinho, LF and Fox, KL (2006) Staphylococcus aureus intramammary infections. Bulletin of the International Dairy Federation 408, 142.Google Scholar
Supplementary material: File

Cicotello et al. supplementary material

Cicotello et al. supplementary material
Download Cicotello et al. supplementary material(File)
File 410.9 KB