Skip to main content
×
Home

Influence of ethanol on the rennet-induced coagulation of milk

  • John E O'Connell (a1), Pasquale Saracino (a1), Thom Huppertz (a1), Therese Uniake (a1), Cornelis G de Kruif (a2), Alan L Kelly (a1) and Patrick F Fox (a1)...
Abstract

The influence of ethanol on the rennet-induced coagulation of milk was studied to investigate potential synergistic effects of these two mechanisms of destabilisation on the casein micelles. Addition of 5% (v/v) ethanol reduced the rennet coagulation time (RCT) of milk, whereas higher levels of ethanol (10–20%, v/v) progressively increased RCT. The temperature at which milk was coagulable by rennet decreased with increasing ethanol content of the milk. The primary stage of rennet coagulation, i.e., the enzymatic hydrolysis of κ-casein, was progressively slowed with increasing ethanol content (5–20%, v/v), possibly due to ethanol-induced conformational changes in the enzyme molecule. The secondary stage of rennet coagulation, i.e., the aggregation of κ-casein-depleted micelles, was enhanced in the presence of 5–15% ethanol, the effect being largest at 5% ethanol. Enhanced aggregation of micelles is probably due to an ethanol-induced decrease in inter-micellar steric repulsion. These results indicate an interrelationship between the effects of ethanol and chymosin on the casein micelles in milk, which may have interesting implications for properties of dairy products.

Copyright
Corresponding author
e-mail: a.kelly@ucc.ie
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Dairy Research
  • ISSN: 0022-0299
  • EISSN: 1469-7629
  • URL: /core/journals/journal-of-dairy-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 99 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.