Hostname: page-component-7dd5485656-tbj44 Total loading time: 0 Render date: 2025-10-22T06:01:46.818Z Has data issue: false hasContentIssue false

Kinetics of local and systemic immune cell populations in Staphylococcus aureus chronically infected bovine mammary gland during active involution

Published online by Cambridge University Press:  15 October 2025

Carolina Engler
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Silvana Pirola
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Camila Beccaria
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Valeria Simonutti
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Celina Baravalle
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Elizabet Amanda Lorena Pereyra
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Cecilia María Camussone
Affiliation:
Estación Experimental Agropecuaria Rafaela, Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Santa Fe, Argentina
Luis Fernando Calvinho
Affiliation:
Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Bibiana Elisabet Dallard
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
Maria Sol Renna*
Affiliation:
Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
*
Corresponding author: Maria Sol Renna; Email: msrenna@fcv.unl.edu.ar

Abstract

The aim of this study was to evaluate the kinetics of local and systemic immune cell populations in mammary secretions and blood samples from cows free of intramammary infections (IMI) and chronically infected with Staphylococcus aureus during active involution. Cows in late lactation that were either uninfected or with chronic S. aureus IMI were included in this study. The percentages of CD14+ cells in blood samples were significantly higher in S. aureus-infected animals than in uninfected animals at days 7 and 21 post-drying-off. However, the percentages of these cells in the mammary secretions from S. aureus-infected quarters were significantly lower compared with those of the uninfected quarters in all evaluated periods. The percentages of CD4+ cells were similar between uninfected animals and S. aureus-infected animals at all involution times in both blood and mammary secretion samples. The percentages of CD8+ cells decreased significantly in mammary secretions of S. aureus-infected quarters compared with those of the uninfected quarters at all involution stages. The percentages of CD21+ cells decreased in blood samples of S. aureus-infected animals compared with uninfected animals at day 21. In secretion samples, the percentages of CD21+ cells decreased in S. aureus-infected quarters at day 7 compared with those of the uninfected quarters. In conclusion, chronic S. aureus IMI induces a significant increase in the number of CD14+ cells in the blood circulation; however, these cells do not appear to migrate to the mammary secretion being potentially retained in the tissue. Although CD4+ and CD8+ lymphocytes did not vary between S. aureus-infected and uninfected animals throughout involution, the decrease in CD8+ cells in mammary secretion from S. aureus-infected animals suggests that these cells are retained in the mammary tissue, fulfilling their specific functions to eliminate intracellularly infected cells. The low number of CD21+ lymphocytes in mammary secretions of infected animals would reduce the humoral defence potential of the gland.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work.

References

Andreotti, CS, Baravalle, C, Sacco, SC, Lovato, M, Pereyra, EAL, Renna, MS, Ortega, HH, Calvinho, LF and Dallard, BE (2017a) Characterization of Immune Response in Staphylococcus aureus Chronically Infected Bovine Mammary Glands during Active Involution. Comparative Immunology, Microbiology & Infectious Diseases 54(February), 5160.10.1016/j.cimid.2017.08.005CrossRefGoogle Scholar
Andreotti, CS, Pereyra, EAL, Baravalle, C, Renna, MS, Ortega, HH, Calvinho, LF and Dallard, BE (2014) Staphylococcus aureus chronic intramammary infection modifies protein expression of transforming growth factor beta (TGF-β) subfamily components during active involution. Research in Veterinary Science 96(1), 514.10.1016/j.rvsc.2013.11.002CrossRefGoogle ScholarPubMed
Andreotti, CS, Pereyra, EAL, Sacco, SC, Baravalle, C, Renna, MS, Ortega, HH, Calvinho, LF and Dallard, BE (2017b) Proliferation-apoptosis balance in Staphylococcus aureus chronically infected bovine mammary glands during involution. Journal of Dairy Research 84(2), 181189.10.1017/S002202991700005XCrossRefGoogle Scholar
Asai, KI, Kai, K, Rikiishi, H, Sugawara, S, Maruyama, Y, Yamaguchi, T, Ohta, M and Kumagai, K (1998) Variation in CD4+ T and CD8+ T lymphocyte subpopulations in bovine mammary gland secretions during lactating and non-lactating periods. Veterinary Immunology and Immunopathology 65(1), 5161.10.1016/S0165-2427(98)00176-7CrossRefGoogle ScholarPubMed
Asai, KI, Komine, Y, Kozutsumi, T, Yamaguchi, T, KI, K and Kumagai, K (2000) Predominant subpopulations of T lymphocytes in the mammary gland secretions during lactation and intraepithelial T lymphocytes in the intestine of dairy cows. Veterinary Immunology and Immunopathology 73(3–4), 233240.10.1016/S0165-2427(00)00158-6CrossRefGoogle ScholarPubMed
Atabai, K, Sheppard, D and Werb, Z (2007) Roles of the Innate Immune System in Mammary Gland Remodelling during Involution. Journal of Mammary Gland Biology and Neoplasia 12(1), 3745.10.1007/s10911-007-9036-6CrossRefGoogle ScholarPubMed
Barkema, HW, Schukken, YH and Zadoks, RN (2006) Invited review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. Journal of Dairy Science 89(6), 18771895.10.3168/jds.S0022-0302(06)72256-1CrossRefGoogle ScholarPubMed
Calvinho, LF and Dallard, BE (2023a) Staphylococcus aureus chronic intramammary infections in dairy cows: pathogen-specific characteristics. CABI Reviews 2023, 113.Google Scholar
Calvinho, LF and Dallard, BE (2023b) Host immune response factors associated with Staphylococcus aureus chronic intramammary infections. CABI Reviews 2023, 115.Google Scholar
Camussone, CM, Molineri, AI, Signorini, ML, Neder, VE, Vitulich, CA and Calvinho, LF (2020) Risk Factors of S. aureus intramammary infection in pre partum dairy heifers under grazing conditions and molecular characterization of isolates from heifers and cows. Journal of Dairy Research 87(1), 8288.10.1017/S0022029919001018CrossRefGoogle ScholarPubMed
Dallard, BE, Baravalle, C, Ortega, HH, Tumini, M, Canavesio, VR, Neder, VE and Calvinho, LF (2009) Effect of a biological response modifier on expression of cd14 receptor and tumor necrosis factor-alpha in Staphylococcus aureus-Infected mammary glands at drying off. Veterinary Immunology and Immunopathology 132(2–4), 237242.10.1016/j.vetimm.2009.05.004CrossRefGoogle ScholarPubMed
Davis, WC and Splitter, GS (1991) Bovine CD2 (BoCD2). Veterinary Immunology and Immunopathology 27(1–3), 4350.10.1016/0165-2427(91)90077-PCrossRefGoogle ScholarPubMed
Dendani Chadi, Z and Arcangioli, M-A (2023) Pulsed-field gel electrophoresis analysis of bovine associated Staphylococcus aureus: a review. Pathogens 12(7), 120. doi:10.3390/pathogens12070966CrossRefGoogle ScholarPubMed
Dinarello, CA (2018) Overview of the IL −1 family in innate inflammation and acquired immunity. Immunological Reviews 281(1), 827.10.1111/imr.12621CrossRefGoogle ScholarPubMed
Doymaz, MZ, Sordillo, LM, Oliver, SP and Guidry, AJ (1988) Effects of Staphylococcus aureus mastitis on bovine mammary gland plasma cell populations and immunoglobulin concentrations in milk. Veterinary Immunology and Immunopathology 20(1), 8793.10.1016/0165-2427(88)90028-1CrossRefGoogle ScholarPubMed
Eberhart, RJ (1986) Management of dry cows to reduce mastitis. Journal of Dairy Science 69(6), 17211732. doi:10.3168/jds.S0022-0302(86)80591-4CrossRefGoogle ScholarPubMed
Engler, C, Renna, MS, Beccaria, C, Silvestrini, P, Pirola, SI, Pereyra, EAL, Baravalle, C, Camussone, CM, Monecke, S, Calvinho, LF and Dallard, BE (2022) Differential immune response to two Staphylococcus aureus strains with distinct adaptation genotypes after experimental intramammary infection of dairy cows. Microbial Pathogenesis 172, .10.1016/j.micpath.2022.105789CrossRefGoogle ScholarPubMed
Faldyna, M, Leva, L, Sladek, Z, Rysanek, D and Toman, M (2006) Γδ-TCR+ CD2- lymphocytes are recruited into bovine mammary gland after stimulation. Veterinarni Medicina 51(5), 258264.10.17221/5545-VETMEDCrossRefGoogle Scholar
Hogeveen, H, Steeneveld, W and Wolf, CA (2019) Production diseases reduce the efficiency of dairy production: a review of the results, methods, and approaches regarding the economics of mastitis. Annual Review of Resource Economics 11, 289312. doi:10.1146/annurev-resource-100518-093954CrossRefGoogle Scholar
Kobayashi, K, Oyama, S, Numata, A, Rahman, M and Kumura, H (2013) Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions. PLoS One 8(4). doi:10.1371/journal.pone.0062187CrossRefGoogle ScholarPubMed
Krishnamoorthy, P, Suresh, KP, Jayamma, KS, Shome, BR, Patil, SS and Amachawadi, RG (2021) An understanding of the global status of major bacterial pathogens of milk concerning bovine mastitis: a systematic review and meta-analysis (Scientometrics). Pathogens 10(5). doi:10.3390/pathogens10050545CrossRefGoogle ScholarPubMed
Lee, JW, Bannerman, DD, Paape, MJ, Huang, MK and Zhao, X (2006) Characterization of cytokine expression in milk somatic cells during intramammary infections with escherichia coli or Staphylococcus aureus by real-time PCR. Veterinary Research 37(5–6), 219229.10.1051/vetres:2005051CrossRefGoogle ScholarPubMed
Martineau, F, Picard, FJ, Roy, PH, Ouellette, M and Bergeron, MG (1998) Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. Journal of Clinical Microbiology 36(3), 618623.10.1128/JCM.36.3.618-623.1998CrossRefGoogle ScholarPubMed
Monks, JF, Geske, J, Lehman, L and Fadok, VA (2002) Do inflammatory cells participate in mammary gland involution? Journal of Mammary Gland Biology and Neoplasia 7(2), 163176.10.1023/A:1020351919634CrossRefGoogle ScholarPubMed
Nagahata, H, Kawai, H, Higuchi, H, Kawai, K, Yayou, K and Chang, CJ (2011) Altered leukocyte responsiveness in dairy cows with naturally occurring chronic Staphylococcus aureus Mastitis. Journal of Veterinary Medical Science 73(7), 885894.10.1292/jvms.10-0379CrossRefGoogle ScholarPubMed
Niedziela, DA, Murphy, MP, Grant, J, Keane, OM and Leonard, FC (2020) Clinical presentation and immune characteristics in first-lactation holstein-friesian cows following intramammary infection with genotypically distinct Staphylococcus aureus strains. Journal of Dairy Science 103(9), 84538466.10.3168/jds.2019-17433CrossRefGoogle ScholarPubMed
Oliver, SP, Gillespie, BE, Headrick, SJ, Moorehead, H, Lunn, P, Dowlen, HH, Johnson, DL, Lamar, KC, Chester, ST and Moseley, WM (2004) Efficacy of extended ceftiofur intramammary therapy for treatment of subclinical mastitis in lactating dairy cows. Journal of Dairy Science 87(8), 23932400.10.3168/jds.S0022-0302(04)73361-5CrossRefGoogle ScholarPubMed
Paape, MJ, Wergin, WP, Guidry, AJ and Pearson, RE (1979) Leukocytes–second line of defense against invading mastitis pathogens. Journal of Dairy Science 62(1), 135153.10.3168/jds.S0022-0302(79)83215-4CrossRefGoogle ScholarPubMed
Pereyra, EAL, Picech, F, Renna, MS, Baravalle, C, Andreotti, CS, Russi, R, Calvinho, LF, Diez, C and Dallard, BE (2016) Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Veterinary Microbiology 183, 6977.10.1016/j.vetmic.2015.12.002CrossRefGoogle ScholarPubMed
Renna, MS, Silvestrini, P, Beccaria, C, Velázquez, NS, Baravalle, C, Engler, C, Pereyra, EAL, Calvinho, LF and Dallard, BE (2019) Effects of chronic Staphylococcus aureus infection on immunological parameters and functionality of macrophages isolated from bovine mammary secretions. Microbial Pathogenesis 137, .10.1016/j.micpath.2019.103743CrossRefGoogle ScholarPubMed
Riollet, C, Rainard, P and Poutrel, B (2001) Cell Subpopulations and Cytokine Expression in Cow Milk in Response to Chronic Staphylococcus aureus Infection. Journal of Dairy Science 84(5), 10771084.10.3168/jds.S0022-0302(01)74568-7CrossRefGoogle ScholarPubMed
Roberson, JR, Fox, LK, Hancock, DD and Besser, TE (1992) Evaluation of Methods for Differentiation of Coagulase-Positive Staphylococci. Journal of Clinical Microbiology 30(12), 32173219.10.1128/jcm.30.12.3217-3219.1992CrossRefGoogle ScholarPubMed
Sacco, SC, Velázquez, NS, Renna, MS, Beccaria, C, Baravalle, C, Pereyra, EAL, Monecke, S, Calvinho, LF and Dallard, BE (2020) Capacity of Two Staphylococcus aureus Strains with Different Adaptation Genotypes to Persist and Induce Damage in Bovine Mammary Epithelial Cells and to Activate Macrophages. Microbial Pathogenesis 142, .10.1016/j.micpath.2020.104017CrossRefGoogle ScholarPubMed
Shahrara, S, Pickens, SR, Mandelin, AM 2nd, Karpus, WJ, Huang, Q, Kolls, JK and Pope, RM (2010) Il-17–mediated monocyte migration occurs partially through cc chemokine ligand 2/monocyte chemoattractant protein-1 induction. Journal of Immunology 184(8), 44794487.10.4049/jimmunol.0901942CrossRefGoogle ScholarPubMed
Silvestrini, P, Beccaria, C, Renna, MS, Engler, C, Simonutti, V, Cellone, I, Calvinho, LF, Dallard, BE and Baravalle, C (2023) In Vitro Evaluation of Ginsenoside Rg1 Immunostimulating Effect in Bovine Mononuclear Cells. Research in Veterinary Science 158, 112.10.1016/j.rvsc.2023.03.003CrossRefGoogle ScholarPubMed
Sládek, Z, Rysánek, D and Faldyna, M (2002) Activation of Phagocytes During Initiation and Resolution of Mammary Gland Injury Induced by Lipopolysaccharide in Heifers. Veterinary Research 33(2), .10.1051/vetres:2002007CrossRefGoogle ScholarPubMed
Sládek, Z and Rysánek, D (2006) The Role of CD14 During Resolution of Experimentally Induced Staphylococcus aureus and Streptococcus uberis Mastitis. Comparative Immunology, Microbiology and Infectious Disease. 29(4), .10.1016/j.cimid.2006.06.006CrossRefGoogle ScholarPubMed
Sordillo, LM (2018) Mammary Gland Immunobiology and Resistance to Mastitis. Veterinary Clinics of North America - Food Animal Practice 34(3), 507523.10.1016/j.cvfa.2018.07.005CrossRefGoogle ScholarPubMed
Sordillo, LM, Nickerson, SC, Akers, RM and Oliver, SP (1987) Secretion Composition during Bovine Mammary Involution and the Relationship with Mastitis. International Journal of Biochemistry 19(12), 11651172.10.1016/0020-711X(87)90098-XCrossRefGoogle ScholarPubMed
Tatarczuch, L, Bischof, RJ, Philip, CJ and Seong Lee, C (2002) Phagocytic capacity of leucocytes in sheep mammary secretions following weaning. Journal of Anatomy 201(5), 351361.10.1046/j.0021-8782.2002.00104.xCrossRefGoogle ScholarPubMed
Tatarczuch, L, Philip, C, Bischof, R and Lee, CS (2000) Leucocyte phenotypes in involution and fully involuted mammary glandular tissues and secretions of sheep. Journal of Anatomy 196(3), 313326.10.1046/j.1469-7580.2000.19630313.xCrossRefGoogle ScholarPubMed
Wang, S, Wu, C, Shen, J, Wu, Y and Wang, Y (2013) Hypermutable Staphylococcus aureus strains present at high frequency in subclinical bovine mastitis isolates are associated with the development of antibiotic resistance. Veterinary Microbiology 165(3–4), 410415.10.1016/j.vetmic.2013.04.009CrossRefGoogle ScholarPubMed
Xu, T, Dong, Z, Wang, X, Qi, S, Li, X, Cheng, R, Liu, L, Zhang, Y and Qing Gao, M (2018) IL-1β induces increased tight junction permeability in bovine mammary epithelial cells via the IL-1β-ERK1/2-MLCK axis upon blood-milk barrier damage. Journal of Cellular Biochemistry 119(11), 90289041.10.1002/jcb.27160CrossRefGoogle ScholarPubMed
Supplementary material: File

Engler et al. supplementary material

Engler et al. supplementary material
Download Engler et al. supplementary material(File)
File 530.8 KB