Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T21:40:53.968Z Has data issue: false hasContentIssue false

Variations in the concentrations of free amino acids in the plasma of the dairy cow at parturition

Published online by Cambridge University Press:  01 June 2009

R. Verbeke
Affiliation:
Physiological Department of the Veterinary Faculty, University of Ghent, Belgium
E. Roets
Affiliation:
Physiological Department of the Veterinary Faculty, University of Ghent, Belgium
G. Peeters
Affiliation:
Physiological Department of the Veterinary Faculty, University of Ghent, Belgium

Summary

The plasma levels of individual amino acids were studied in 6 dairy cows from 4 days before to 3 days after calving. During this sampling period, the concentrations of 13 amino acids showed significant changes. The levels of several amino acids were depressed markedly in the sample collected immediately before calving. Following parturition, the concentration of most amino acids gradually returned to values obtained 3 days before calving. The glutamine and alanine contents of the plasma rose to a peak value 1 day after calving and subsequently decreased. The mean concentrations of glycine and α-aminobutyric acid did not change before parturition but rose significantly thereafter. These observations are discussed in terms of amino-acid utilization for milk protein synthesis and gluconeogenesis at the onset of lactation. The changes in plasma amino acid levels appear to be synchronized with those reported for prolactin and progesterone in the 24 h before parturition. This may indicate an important influence of both hormones on the lactogenic process in the cow. The highly significant correlations obtained between the concentrations of 14 individual amino acids are discussed.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, W. M. & Wagner, W. C. (1970). Biology of Reproduction 3, 223.CrossRefGoogle Scholar
Baird, G. D. & Heitzman, R. J. (1970). Biochemical Journal 116, 865.CrossRefGoogle Scholar
Baldwin, R. L. & Cheng, W. (1969). Journal of Dairy Science 52, 523.CrossRefGoogle Scholar
Ballard, F. J., Hanson, R. W. & Kronfeld, D. S. (1969). Federation Proceedings Federation of American Societies for Experimental Biology 28, 218.Google Scholar
Benson, J. V. Jr, Gordon, M. J. & Patterson, J. A. (1967). Analytical Biochemistry 18, 228.CrossRefGoogle Scholar
Black, A. L., Egan, A. R., Anand, R. S. & Chapman, T. E. (1968). Isotope Studies on the Nitrogen Chain: Proceedings of a Conference, p. 247. Vienna: International Atomic Energy Agency.Google Scholar
Champredon, C., Pion, R. & Fauconneau, G. (1969). Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Série D 269, 2029.Google Scholar
Cowie, A. T. & Tindal, J. S. (1971). The Physiology of Lactation, p. 151. London: E. Arnold.Google Scholar
Donaldson, L. E., Bassett, J. M. & Thorburn, G. D. (1970). Journal of Endocrinology 48, 599.CrossRefGoogle Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968). American Journal of Physiology 215, 1260.CrossRefGoogle Scholar
Fahien, L. A., Lin-Yu, J. H., Smith, S. E. & Happy, J. M. (1971). Journal of Biological Chemistry 246, 7421.CrossRefGoogle Scholar
Flatt, W. P., Moore, L. A., Hooven, N. W. & Plowman, R. D. (1965). Journal of Dairy Science 48, 797.Google Scholar
Halfpenny, A. F., Rook, J. A. F. & Smith, G. H. (1969). British Journal of Nutrition 23, 547.CrossRefGoogle Scholar
Hershko, A. & Kindler, S. H. (1966). Biochemical Journal 101, 661.CrossRefGoogle Scholar
Hill, K. J. & Mongan, J. L. (1964). Biochemical Journal 93, 39.CrossRefGoogle Scholar
Hunter, A. R. & Jefferson, L. S. (1969). Biochemical Journal 111, 537.CrossRefGoogle Scholar
Kaplan, J. H. & Pitot, H. C. (1970). In Mammalian Protein Metabolism, vol. 4, p. 387. (Eds Munro, H. N. and Allison, J. B.). New York: Academic Press.CrossRefGoogle Scholar
Katanuma, N., Matsuda, Y. & Tomino, I. (1964). Journal of Biochemistry 56, 499.CrossRefGoogle Scholar
Leibholz, J. (1966). Australian Journal of Agricultural Research 17, 237.CrossRefGoogle Scholar
Oltjen, R. R. & Putnam, P. A. (1966). Journal of Nutrition 89, 385.CrossRefGoogle Scholar
Schams, D. & Karg, H. (1970). Zentralblatt für Veterinärmedizin, Reihe A 17, 193.CrossRefGoogle Scholar
Shimbayashi, K., Ide, Y. & Yonemura, T. (1967). Agricultural and Biological Chemistry 31, 628.CrossRefGoogle Scholar
Shimbayashi, K. & Yonemura, T. (1965). National Institute of Animal Health Quarterly 5, 202.Google Scholar
Snedecor, G. W. (1956). Statistical Methods, 5th edn.Ames, Iowa: Iowa State University Press.Google Scholar
Stein, W. H. & Moore, S. (1954). Journal of Biological Chemistry 211, 915.CrossRefGoogle Scholar
Theurer, B., Woods, W. & Poley, S. E. (1968). Journal of Animal Science 27, 1059.CrossRefGoogle Scholar
Tomkins, G. M., Yielding, K. L., Curran, J. F., Summers, M. R. & Bitensky, M. W. (1965). Journal of Biological Chemistry 240, 3793.CrossRefGoogle Scholar
Verbeke, R. (1970). Thesis, University of Ghent.Google Scholar
Verbeke, R. & Peeters, G. (1965). Biochemical Journal 94, 183.CrossRefGoogle Scholar