Skip to main content Accessibility help

Association between birth weight and childhood cardiovascular disease risk factors in West Virginia

  • Amna Umer (a1), Candice Hamilton (a1), Lesley Cottrell (a1), Peter Giacobbi (a2), Kim Innes (a3), George A. Kelley (a4), William Neal (a1), Collin John (a1) and Christa Lilly (a4)...


The reported associations between birth weight and childhood cardiovascular disease (CVD) risk factors have been inconsistent. In this study, we investigated the relationship between birth weight and CVD risk factors at 11 years of age. This study used longitudinally linked data from three cross-sectional datasets (N = 22,136) in West Virginia; analysis was restricted to children born full-term (N = 19,583). The outcome variables included resting blood pressure [systolic blood pressure (SBP), diastolic blood pressure (DBP)] and lipid profile [total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL, and triglycerides (TG)]. Multiple regression analyses were performed, adjusting for child’s body mass index (BMI), sociodemographics, and lifestyle characteristics. Unadjusted analyses showed a statistically significant association between birth weight and SBP, DBP, HDL, and TG. When adjusted for the child’s BMI, the association between birth weight and HDL [b = 0.14 (95% CI: 0.11, 0.18) mg/dl per 1000 g increase] and between birth weight and TG [b = –0.007 (–0.008, –0.005) mg/dl per 1000 g increase] remained statistically significant. In the fully adjusted model, low birth weight was associated with higher LDL, non-HDL, and TGs, and lower HDL levels. The child’s current BMI at 11 years of age partially (for HDL, non-HDL, and TG) and fully mediated (for SBP and DBP) the relationship between birth weight and select CVD risk factors. While effects were modest, these risk factors may persist and amplify with age, leading to potentially unfavorable consequences in later adulthood.


Corresponding author

Address for correspondence: Amna Umer, Ph.D., Department of Pediatrics, School of Medicine, West Virginia University, Morgantown, WV 26506, phone: (304) 293-1211. Email:


Hide All
1. Roth, GA, Forouzanfar, MH, Moran, AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015; 372(14), 13331341.
2. Naghavi, M, Collaborators (712). GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385 (9963), 117171.
3. Mozaffarian, D, Benjamin, EJ, Go, AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016; 133 (4), e38e360.
4. Ong, KL, Tso, AW, Lam, KS, Cheung, BM. Gender difference in blood pressure control and cardiovascular risk factors in Americans with diagnosed hypertension. Hypertension. 2008; 51 (4), 11421148.
5. Chobanian, AV, Bakris, GL, Black, HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003; 42 (6), 12061252.
6. O’Donnell, MJ, Xavier, D, Liu, L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010; 376 (9735), 112123.
7. Yusuf, S, Hawken, S, Ounpuu, S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364 (9438), 937952.
8. CDC. Cholesterol Facts. National Center for Chronic Disease Prevention and Health Promotion, Division for Heart Disease and Stroke Prevention. 2012 [cited 2015 February 13, 2015].
9. Azadbakht, L, Kelishadi, R, Saraf-Bank, S, et al. The association of birth weight with cardiovascular risk factors and mental problems among Iranian school-aged children: the CASPIAN-III study. Nutrition. 2014; 30 (2), 150158.
10. Bekkers, MB, Brunekreef, B, Smit, HA, et al. Early-life determinants of total and HDL cholesterol concentrations in 8-year-old children; the PIAMA birth cohort study. PLoS One. 2011; 6 (9), e25533.
11. IOM. Institute of Medicine (US) Committee on Preventing the Global Epidemic of Cardiovascular Disease: Meeting the Challenges in Developing Countries. In Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health. 2010 (eds. Fuster, V, Kelly, BB ). National Academies Press (US), Washington (DC). 6, Cardiovascular Health Promotion Early in Life.
12. Kaar, JL, Crume, T, Brinton, JT, et al. Maternal obesity, gestational weight gain, and offspring adiposity: the exploring perinatal outcomes among children study. J Pediatr. 2014; 165 (3), 509515.
13. Nehring, I, Chmitorz, A, Reulen, H, von Kries, R, Ensenauer, R. Gestational diabetes predicts the risk of childhood overweight and abdominal circumference independent of maternal obesity. Diabet Med. 2013; 30 (12), 14491456.
14. El-Behadli, AF, Sharp, C, Hughes, SO, Obasi, EM, Nicklas, TA. Maternal depression, stress and feeding styles: towards a framework for theory and research in child obesity. Br J Nutr. 2015; 113, S55–S71.
15. Laura, HC, Menezes, AB, Noal, RB, Hallal, PC, Araujo, CL. Maternal anthropometric characteristics in pregnancy and blood pressure among adolescents: 1993 live birth cohort, Pelotas, southern Brazil. BMC Public Health. 2010; 10, 434.
16. Fraser, A, Tilling, K, Macdonald-Wallis, C, et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation. 2010; 121 (23), 25572564.
17. Owen, CG, Whincup, PH, Kaye, SJ, et al. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am J Clin Nutr. 2008; 88 (2), 305314.
18. WHO. World Health Organization, International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, 1992. World Health Organization, Geneva. 1992.
19. CDC. PedNSS Health Indicators. Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion. 2012 [updated October 29, 2009; cited 2015 March, 6].
20. PedNSS. Pediatric Nutrition Surveillance System (PedNSS) and the Pregnancy Surveillance System (PNSS). Division of Nutrition and Physical Activity. National Center for Chronic Disease Prevention and Health Promotion. Centers for Disease Control and Prevention. United States Department of Health and Human Services. Available at: PDF: 2014 [updated 2014; cited 2015 March 6]; Available from:
21. UHF. America’s Health Ranking. United Health Foundation. 2014 [updated 2014; cited 2015 March, 06].
22. Barker, DJ, Gluckman, PD, Godfrey, KM, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993; 341 (8850), 938941.
23. Huxley, R, Owen, CG, Whincup, PH, et al. Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr. 2007; 85(5), 12441250.
24. de Jong, F, Monuteaux, MC, van Elburg, RM, Gillman, MW, Belfort, MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012; 59 (2), 226234.
25. Risnes, KR, Vatten, LJ, Baker, JL, et al. Birthweight and mortality in adulthood: a systematic review and meta-analysis. Int J Epidemiol. 2011; 40 (3), 647661.
26. Zarrati, M, Shidfar, F, Razmpoosh, E, et al. Does low birth weight predict hypertension and obesity in schoolchildren? Ann Nutr Metab. 2013; 63 (1-2), 6976.
27. Gademan, MG, van Eijsden, M, Roseboom, TJ, et al. Maternal prepregnancy body mass index and their children’s blood pressure and resting cardiac autonomic balance at age 5 to 6 years. Hypertension. 2013; 62(3), 641647.
28. Frontini, MG, Srinivasan, SR, Xu, J, Berenson, GS. Low birth weight and longitudinal trends of cardiovascular risk factor variables from childhood to adolescence: the bogalusa heart study. BMC Pediatr. 2004; 4 (1), 22.
29. Filler, G, Yasin, A, Kesarwani, P, et al. Big mother or small baby: which predicts hypertension? J Clin Hypertens (Greenwich). 2011; 13 (1), 3541.
30. Sousa, MA, Guimaraes, IC, Daltro, C, Guimaraes, AC. Association between birth weight and cardiovascular risk factors in adolescents. Arq Bras Cardiol. 2013; 101 (1), 917.
31. Donker, GA, Labarthe, DR, Harrist, RB, et al. Low birth weight and serum lipid concentrations at age 7–11 years in a biracial sample. Am J Epidemiol. 1997; 145 (5), 398407.
32. Tilling, K, Davies, N, Windmeijer, F, et al. Is infant weight associated with childhood blood pressure? Analysis of the Promotion of Breastfeeding Intervention Trial (PROBIT) cohort. Int J Epidemiol. 2011; 40 (5), 12271237.
33. Amorim Rde, J, Coelho, AF, de Lira, PI, Lima Mde, C. Is breastfeeding protective for blood pressure in schoolchildren? A cohort study in northeast Brazil. Breastfeed Med. 2014; 9 (3), 149156.
34. Laor, A, Stevenson, DK, Shemer, J, Gale, R, Seidman, DS. Size at birth, maternal nutritional status in pregnancy, and blood pressure at age 17: population based analysis. BMJ. 1997; 315 (7106), 449453.
35. Malin, G, Morris, R, Riley, R, Teune, M, Khan, K. When is birthweight at term (>/ = 37 weeks’ gestation) abnormally low? A systematic review and meta-analysis of the prognostic and predictive ability of current birthweight standards for childhood and adult outcomes. BJOG. 2015; 122(5): 634642.
36. Bergel, E, Haelterman, E, Belizan, J, Villar, J, Carroli, G. Perinatal factors associated with blood pressure during childhood. Am J Epidemiol. 2000; 151 (6), 594601.
37. Hardy, R, Sovio, U, King, VJ, et al. Birthweight and blood pressure in five European birth cohort studies: an investigation of confounding factors. Eur J Public Health. 2006; 16 (1), 2130.
38. Mu, M, Wang, SF, Sheng, J, et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis. 2012; 105 (2), 99113.
39. Zhang, Z, Kris-Etherton, PM, Hartman, TJ. Birth weight and risk factors for cardiovascular disease and type 2 diabetes in US children and adolescents: 10 year results from NHANES. Matern Child Health J. 2014; 18 (6), 14231432.
40. Thorsdottir, I, Gunnarsdottir, I, Palsson, GI. Association of birth weight and breast-feeding with coronary heart disease risk factors at the age of 6 years. Nutr Metab Cardiovasc Dis. 2003; 13 (5), 267–72.
41. Gomes, FM, Subramanian, SV, Escobar, AM, et al. No association between low birth weight and cardiovascular risk factors in early adulthood: evidence from Sao Paulo, Brazil. PLoS One. 2013; 8 (6), e66554.
42. WVDHHR. West Virginia Birth Score Project. This program is funded under an agreement with the West Virginia Department of Health and Human Resources, Bureau for Public Health, Office of Maternal, Child and Family Health. Available at 2013;
43. Myerberg, DZ, Carpenter, RG, Myerberg, CF, et al. Reducing postneonatal mortality in West Virginia: a statewide intervention program targeting risk identified at and after birth. Am J Public Health. 1995; 85 (5), 631637.
44. Mullett, MD, Cottrell, L, Lilly, C, et al. Association between birth characteristics and coronary disease risk factors among fifth graders. J Pediatr. 2014; 164 (1), 7882.
45. Muratova, VN, Demerath, EW, Spangler, E, et al. The relation of obesity to cardiovascular risk factors among children: the CARDIAC project. W V Med J. 2002; 98 (6), 263267.
46. Umer, A, Lilly, C, Hamilton, C, et al. Updating a Perinatal Risk Scoring System to Predict Infant Mortality. Am J Perinatol 2018; [Epub ahead of print].
47. Cottrell, L, John, C, Murphy, E, et al. Individual-, family-, community-, and policy-level impact of a school-based cardiovascular risk detection screening program for children in underserved, rural areas: the CARDIAC Project. J Obes. 2013; 2013, 732579.
48. Harris, CV, Neal, WA. Assessing BMI in West Virginia schools: parent perspectives and the influence of context. Pediatrics. 2009; 124 Suppl 1, S63S72.
49. Demerath, E, Muratova, V, Spangler, E, et al. School-based obesity screening in rural Appalachia. Prev Med. 2003; 37 (6 Pt 1), 553560.
50. Ice, CL, Murphy, E, Minor, VE, Neal, WA. Metabolic syndrome in fifth grade children with acanthosis nigricans: results from the CARDIAC project. World J Pediatr. 2009; 5 (1), 2330.
51. Friedewald, WT, Levy, RI, Fredrickson, DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18 (6), 499502.
52. Sola-Visner, M. Cardiovascular disease and weight ... at birth. Blood. 2011; 118 (6), 14391441.
53. Wilcox, AJ. On the importance-and the unimportance-of birthweight. Int J Epidemiol. 2001; 30, 12331241.
54. Kramer, MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ. 1987; 65(5), 663737.
55. Delisle, H. Programming of chronic disease by impaired fetal nutrition. Evidence and implications for policy and intervention strategies. World Health Organization; 2002.
56. Schellong, K, Schulz, S, Harder, T, Plagemann, A. Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PLoS One. 2012; 7 (10), e47776.
57. Terry, MB, Wei, Y, Esserman, D, McKeague, IW, Susser, E. Pre- and postnatal determinants of childhood body size: cohort and sibling analyses. J Dev Orig Health Dis. 2011; 2 (2), 99111.
58. Li, N, Strobino, D, Ahmed, S, Minkovitz, CS. Is there a healthy foreign born effect for childhood obesity in the United States? Matern Child Health J. 2011; 15 (3), 310323.
59. Lauren, L, Jarvelin, MR, Elliott, P, et al. Relationship between birthweight and blood lipid concentrations in later life: evidence from the existing literature. Int J Epidemiol. 2003; 32 (5), 862876.
60. Must, A, Anderson, SE. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes (Lond). 2006; 30 (4), 590594.
61. Kuczmarski, RJ, Ogden, CL, Guo, SS, et al. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat. 11 2002 (246), 1190.
62. US-Census-Bureau. U.S. Census Bureau: State and County QuickFacts. Data derived from Population Estimates, American Community Survey, Census of Population and Housing, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits vol. 2014; 2011.
63. Shrout, PE, Bolger, N. Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods. 2002; 7 (4), 422445.
64. Hurley, D, Hullsey, J, McKeown, R, Addy, C. An Evaluation of Splines in Linear Regression Paper 147-31. C
65. Huang, N. Scenarios Where Utilizing a Spline Model in Developing a Regression Model Is Appropriate.
66. Menezes, AM, Hallal, PC, Horta, BL, et al. Size at birth and blood pressure in early adolescence: a prospective birth cohort study. Am J Epidemiol. 2007; 165 (6), 611616.
67. Huxley, RR, Shiell, AW, Law, CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000; 18 (7), 815831.
68. Gamborg, M, Byberg, L, Rasmussen, F, et al. Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. Am J Epidemiol. 2007; 166 (6), 634645.
69. Frese, EM, Fick, A, Sadowsky, HS. Blood pressure measurement guidelines for physical therapists. Cardiopulm Phys Ther J. 2011; 22(2), 512.
70. Pickering, TG, Hall, JE, Appel, LJ, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005; 111 (5), 697716.
71. Tin, LL, Beevers, DG, Lip, GY. Systolic vs diastolic blood pressure and the burden of hypertension. J Hum Hypertens. 2002; 16(3), 147150.
72. Van Hulst, A, Barnett, TA, Paradis, G, et al. Birth Weight, Postnatal Weight Gain, and Childhood Adiposity in Relation to Lipid Profile and Blood Pressure During Early Adolescence. J Am Heart Assoc. 2017; 6(8): e006302.
73. Huang, RC, Burke, V, Newnham, JP, et al. Perinatal and childhood origins of cardiovascular disease. Int J Obes (Lond). 2007; 31 (2), 236244.
74. Owen, CG, Whincup, PH, Odoki, K, Gilg, JA, Cook, DG. Birth weight and blood cholesterol level: a study in adolescents and systematic review. Pediatrics. 2003; 111 (5 Pt 1), 10811089.
75. Umer, A, Hamilton, C, Britton, CM, et al. Association between Breastfeeding and Childhood Obesity: analysis of a Linked Longitudinal Study of Rural Appalachian Fifth-Grade Children. Child Obes. 2015; 11 (4), 449455.
76. Gillman, MW. Epidemiological challenges in studying the fetal origins of adult chronic disease. Int J Epidemiol. 2002; 31 (2), 294299.


Type Description Title
Supplementary materials

Umer et al. supplementary material
Figure S2

 PDF (84 KB)
84 KB
Supplementary materials

Umer et al. supplementary material
Tables S1-S3

 Word (56 KB)
56 KB
Supplementary materials

Umer et al. supplementary material
Figure S1

 PDF (197 KB)
197 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed