Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-06T08:57:56.551Z Has data issue: false hasContentIssue false

Association between vitamin levels and obesity in the national health and nutrition examination surveys 2017 to 2018

Published online by Cambridge University Press:  23 January 2024

Xiaomin Lu*
Affiliation:
Jiangsu Vocational College of Medicine, Yancheng, JS, China
Zhongyou Sun
Affiliation:
Yancheng Center for Disease Control and Prevention, Yancheng, JS, China
*
Corresponding author: X. Lu; Email: amin198762@163.com

Abstract

In recent years, the rapidly increasing incidence of obesity is becoming a worldwide public health problem. Obesity is a chronic disease which may have a major negative effect on the people’s quality of life. Previous studies on the comprehensive effects of multivitamins on central obesity and general obesity are relatively few. The aim of this study was to evaluate association of vitamins exposure with obesity risk and obesity-related indicators. We fitted three statistical models (linear regression model, logistic regression model, and Bayesian kernel machine regression model) to evaluate the correlation between vitamin levels and obesity in the study population. The vitamin score represents the overall level of vitamin in serum, which was mutually verified with the results obtained from statistical model. The vitamin (A, C, and D) levels were significantly higher among non-obesity group compared to the obesity group. Using the lowest quartile of vitamin level as a referent, vitamin A, C, and D levels showed significantly negative correlation with the obesity risk in both adjusted and unadjusted models. When considering all vitamin as a mixed exposure, we found a generally negative relationship between vitamin mixtures with binary outcome (obesity) and continuous outcome (BMI, waist circumference, and hsCRP). Reduced levels of vitamins (A, C and D) increased the risk of obesity. Increased levels of vitamin mixtures can significantly reduce obesity risk and obesity-related indicators. Vitamins may reduce the risk of obesity by suppressing inflammatory responses.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, Y, Dong, T, Hu, W, et al. Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ Int. 2019; 123, 325336.CrossRefGoogle ScholarPubMed
Hu, Y, Zheng, SL, Ye, XL, et al. Cost-effectiveness analysis of 4 GLP-1RAs in the treatment of obesity in a US setting. Ann Transl Med. 2022; 10, 152.CrossRefGoogle Scholar
Ganesan, K, Xu, B. Anti-obesity effects of medicinal and edible mushrooms. Molecules. 2018; 23(11), 2880.CrossRefGoogle ScholarPubMed
Xu, Z, Huo, J, Ding, X, et al. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci Rep. 2017; 7(1), 8253.CrossRefGoogle ScholarPubMed
Thomas-Valdés, S, Tostes, M, Anunciação, PC, da Silva, BP, Sant’Ana, HMP. Association between vitamin deficiency and metabolic disorders related to obesity. Crit Rev Food Sci Nutr. 2017; 57(15), 33323343.CrossRefGoogle ScholarPubMed
Huang, X, Yang, Y, Jiang, Y, Zhou, Z, Zhang, J. Association between vitamin D deficiency and lipid profiles in overweight and obese adults: a systematic review and meta-analysis. BMC Public Health. 2023; 23(1), 1653.CrossRefGoogle ScholarPubMed
Pérez-Torres, I, Castrejón-Téllez, V, Soto, ME, Rubio-Ruiz, ME, Manzano-Pech, L, Guarner-Lans, V. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci. 2021; 22(4), 1786.CrossRefGoogle ScholarPubMed
Kaidar-Person, O, Person, B, Szomstein, S, Rosenthal, RJ. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part A: vitamins. Obes Surg. 2008; 18(7), 870876.CrossRefGoogle Scholar
Moukayed, M, Grant, WB. Linking the metabolic syndrome and obesity with vitamin D status: risks and opportunities for improving cardiometabolic health and well-being. Diabetes Metab Syndr Obes. 2019; 12, 14371447.CrossRefGoogle ScholarPubMed
Asuquo, EA, Nwodo, OFC, Assumpta, AC, Orizu, UN, Oziamara, ON, Solomon, OA. FTO gene expression in diet-induced obesity is downregulated by Solanum fruit supplementation. Open Life Sci. 2022; 17(1), 641658.CrossRefGoogle ScholarPubMed
Coronel, J, Pinos, I, Amengual, J. β-carotene in obesity research: technical considerations and current status of the field. Nutrients. 2019; 11(4), 842.CrossRefGoogle ScholarPubMed
Wu, Z, Guan, T, Cai, D, Su, G. Exposure to multiple metals in adults and diabetes mellitus: a cross-sectional analysis. Environ Geochem Health. 2022; 45, 32513261.CrossRefGoogle ScholarPubMed
Abdali, D, Samson, SE, Grover, AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract. 2015; 24(3), 201215.CrossRefGoogle ScholarPubMed
Hotamisligil, GS. Inflammation and metabolic disorders. Nature. 2006; 444(7121), 860867.CrossRefGoogle ScholarPubMed
Eren, E, Abuhandan, M, Solmaz, A, Taşkın, A. Serum paraoxonase/arylesterase activity and oxidative stress status in children with metabolic syndrome. J Clin Res Pediatr Endocrinol. 2014; 6, 163168.CrossRefGoogle ScholarPubMed
Wang, F, Chen, T, Sun, L, et al. Circulating PGRN levels are increased but not associated with insulin sensitivity or β-cell function in chinese obese children. Dis Markers. 2018; 2018, 3729402.CrossRefGoogle ScholarPubMed
Holvoet, P. Stress in obesity and associated metabolic and cardiovascular disorders. Scientifica (Cairo). 2012; 205027, 2012–19.Google ScholarPubMed
Bähr, I, Spielmann, J, Quandt, D, Kielstein, H. Obesity-associated alterations of natural killer cells and immunosurveillance of cancer. Front Immunol. 2020; 11, 245.CrossRefGoogle ScholarPubMed
Xiao, G, Zeng, Z, Jiang, J, et al. Network pharmacology analysis and experimental validation to explore the mechanism of Bushao Tiaozhi capsule (BSTZC) on hyperlipidemia. Sci Rep. 2022; 12(1), 6992.CrossRefGoogle ScholarPubMed
Gomes, CC, Passos, TS, Morais, AHA. Vitamin a status improvement in obesity: findings and perspectives using encapsulation techniques. Nutrients. 2021; 13(6), 1921.CrossRefGoogle ScholarPubMed
Saeed, A, Hoogerland, JA, Wessel, H, et al. Glycogen storage disease type 1a is associated with disturbed vitamin a metabolism and elevated serum retinol levels. Hum Mol Genet. 2020; 29(2), 264273.CrossRefGoogle ScholarPubMed
Kuang, H, Wei, CH, Wang, T, Eastep, J, Li, Y, Chen, G. Vitamin a status affects weight gain and hepatic glucose metabolism in rats fed a high-fat diet. Biochem Cell Biol. 2019; 97(5), 545553.CrossRefGoogle ScholarPubMed
Wei, X, Peng, R, Cao, J, et al. Serum vitamin a status is associated with obesity and the metabolic syndrome among school-age children in Chongqing, China. Asia Pac J Clin Nutr. 2016; 25(3), 563570.Google ScholarPubMed
Yao, N, Yan, S, Guo, Y, et al. The association between carotenoids and subjects with overweight or obesity: a systematic review and meta-analysis. Food Funct. 2021; 12(11), 47684782.CrossRefGoogle ScholarPubMed
Bento, C, Matos, AC, Cordeiro, A, Ramalho, A. Vitamin a deficiency is associated with body mass index and body adiposity in women with recommended intake of vitamin A. Nutr Hosp. 2018; 35(5), 10721078.Google ScholarPubMed
Palozza, P, Krinsky, NI. Beta-carotene and alpha-tocopherol are synergistic antioxidants. Arch Biochem Biophys. 1992; 297(1), 184187.CrossRefGoogle ScholarPubMed
Jeyakumar, SM, Vajreswari, A. Vitamin a as a key regulator of obesity & its associated disorders: evidences from an obese rat model. Indian J Med Res. 2015; 141(3), 275284.CrossRefGoogle ScholarPubMed
Ji, F, Qiu, X. Non-apoptotic programmed cell death in thyroid diseases. Pharmaceuticals (Basel). 2022; 15, 1565.CrossRefGoogle ScholarPubMed
Via, M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012; 103472, 2012–8.Google ScholarPubMed
Jampilek, J, Kralova, K. Potential of Nanonutraceuticals in increasing immunity. Nanomaterials (Basel). 2020; 10(11), 2224.CrossRefGoogle ScholarPubMed
Gorin, AA, Raynor, HA, Fava, J, et al. Randomized controlled trial of a comprehensive home environment-focused weight-loss program for adults. Health Psychol. 2013; 32(2), 128137.CrossRefGoogle ScholarPubMed
Canoy, D, Wareham, N, Welch, A, et al. Plasma ascorbic acid concentrations and fat distribution in 19,068 british men and women in the European prospective investigation into cancer and nutrition Norfolk cohort study. Am J Clin Nutr. 2005; 82(6), 12031209.CrossRefGoogle Scholar
Johnston, CS, Corte, C, Swan, PD. Marginal vitamin C status is associated with reduced fat oxidation during submaximal exercise in young adults. Nutr Metab (Lond). 2006; 3(1), 35.CrossRefGoogle ScholarPubMed
Ellulu, MS. Obesity, cardiovascular disease, and role of vitamin C on inflammation: a review of facts and underlying mechanisms. Inflammopharmacology. 2017; 25(3), 313328.CrossRefGoogle ScholarPubMed
Jeon, SM, Shin, EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018; 50(4), 114.Google ScholarPubMed
de La Puente-Yagüe, M, Cuadrado-Cenzual, MA, Ciudad-Cabañas, MJ, Hernández-Cabria, M, Collado-Yurrita, L. Vitamin D: and its role in breast cancer. Kaohsiung J Med Sci. 2018; 34(8), 423427.CrossRefGoogle ScholarPubMed
Looker, AC. Body fat and vitamin D status in black versus white women. J Clin Endocrinol Metab. 2005; 90(2), 635640.CrossRefGoogle ScholarPubMed
Cheng, S, Massaro, JM, Fox, CS, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham heart study. Diabetes. 2010; 59(1), 242248.CrossRefGoogle ScholarPubMed
Mehmood, ZH, Papandreou, D. An updated mini review of vitamin D and obesity: Adipogenesis and inflammation state. Open Access Maced J Med Sci. 2016; 4(3), 526532.CrossRefGoogle ScholarPubMed
Abbas, MA. Physiological functions of vitamin D in adipose tissue. J Steroid Biochem Mol Biol. 2017; 165, 369381.CrossRefGoogle ScholarPubMed
Dix, CF, Bauer, JD, Martin, I, et al. Association of sun exposure, skin colour and body mass index with vitamin D status in individuals who are morbidly obese. Nutrients. 2017; 9(10), 1094.CrossRefGoogle ScholarPubMed
Ceglia, L, Nelson, J, Ware, J, et al. Association between body weight and composition and plasma 25-hydroxyvitamin D level in the diabetes prevention program. Eur J Nutr. 2017; 56(1), 161170.CrossRefGoogle ScholarPubMed
Rychter, AM, Hryhorowicz, S, Słomski, R, Dobrowolska, A, Krela-Kaźmierczak, I. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity - a narrative review. Clin Nutr. 2022; 41(7), 15571565.CrossRefGoogle ScholarPubMed
Noeman, SA, Hamooda, HE, Baalash, AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011; 3(1), 17.CrossRefGoogle ScholarPubMed
Dehbalaei, MG, Ashtary-Larky, D, Amarpoor Mesrkanlou, H, Talebi, S, Asbaghi, O. The effects of magnesium and vitamin E co-supplementation on some cardiovascular risk factors: a meta-analysis. Clin Nutr ESPEN. 2021; 41, 110117.CrossRefGoogle ScholarPubMed