Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T16:02:08.832Z Has data issue: false hasContentIssue false

The developmental origins of health and disease and intergenerational inheritance: a scoping review of multigenerational cohort studies

Published online by Cambridge University Press:  07 March 2024

Jie Tan
Affiliation:
School of Public Health, Wuhan University, Wuhan, HB, China Global Health Research Center, Duke Kunshan University, Kunshan, JS, China
Zifang Zhang
Affiliation:
School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, ZJ, China
Lijing L. Yan*
Affiliation:
School of Public Health, Wuhan University, Wuhan, HB, China Global Health Research Center, Duke Kunshan University, Kunshan, JS, China
Xiaolin Xu*
Affiliation:
School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, ZJ, China
*
Corresponding authors: L. Yan; Email: lijing.yan@duke.edu and X. Xu; Email: xiaolin.xu@zju.edu.cn
Corresponding authors: L. Yan; Email: lijing.yan@duke.edu and X. Xu; Email: xiaolin.xu@zju.edu.cn

Abstract

Epidemiologic research has increasingly acknowledged the importance of developmental origins of health and disease (DOHaD) and suggests that prior exposures can be transferred across generations. Multigenerational cohorts are crucial to verify the intergenerational inheritance among human subjects. We carried out this scoping review aims to summarize multigenerational cohort studies’ characteristics, issues, and implications and hence provide evidence to the DOHaD and intergenerational inheritance. We adopted a comprehensive search strategy to identify multigenerational cohorts, searching PubMed, EMBASE, and Web of Science databases from the inception of each dataset to June 20th, 2022, to retrieve relevant articles. After screening, 28 unique multigenerational cohort studies were identified. We classified all studies into four types: population-based cohort extended three-generation cohort, birth cohort extended three-generation cohort, three-generation cohort, and integrated birth and three-generation cohort. Most cohorts (n = 15, 53%) were categorized as birth cohort extended three-generation studies. The sample size of included cohorts varied from 41 to 167,729. The study duration ranged from two years to 31 years. Most cohorts had common exposures, including socioeconomic factors, lifestyle, and grandparents’ and parents’ health and risk behaviors over the life course. These studies usually investigated intergenerational inheritance of diseases as the outcomes, most frequently, obesity, child health, and cardiovascular diseases. We also found that most multigenerational studies aim to disentangle genetic, lifestyle, and environmental contributions to the DOHaD across generations. We call for more research on large multigenerational well-characterized cohorts, up to four or even more generations, and more studies from low- and middle-income countries.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, DJ. The origins of the developmental origins theory. J Intern Med. 2007; 261(5), 412417.CrossRefGoogle ScholarPubMed
Hanson, MA, Gluckman, PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014; 94(4), 10271076.CrossRefGoogle ScholarPubMed
Hoffman, DJ, Powell, TL, Barrett, ES, Hardy, DB. Developmental origins of metabolic diseases. Physiol Rev. 2021; 101(3), 739795.CrossRefGoogle ScholarPubMed
Gage, SH, Munafò, MR, Davey Smith, G. Causal inference in developmental origins of health and disease (DOHaD) research. Annu Rev Psychol. 2016; 67(1), 567585.CrossRefGoogle ScholarPubMed
O’Donnell, KJ, Meaney, MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry. 2017; 174(4), 319328.CrossRefGoogle ScholarPubMed
Oestreich, AK, Moley, KH. Developmental and transmittable origins of obesity-associated health disorders. Trends Genet. 2017; 33(6), 399407.CrossRefGoogle ScholarPubMed
Warmink-Perdijk, WDB, Peters, LL, Tigchelaar, EF, et al. Lifelines NEXT: a prospective birth cohort adding the next generation to the three-generation lifelines cohort study. Eur J Epidemiol. 2020; 35(2), 157168.CrossRefGoogle Scholar
Arshad, SH, Karmaus, W, Zhang, H, Holloway, JW. Multigenerational cohorts in patients with asthma and allergy. J Allergy Clin Immunol. 2017; 139(2), 415421.CrossRefGoogle ScholarPubMed
Mørkve Knudsen, T, Rezwan, FI, Jiang, Y, Karmaus, W, Svanes, C, Holloway, JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol. 2018; 142(3), 765772.CrossRefGoogle ScholarPubMed
Sutton, EF, Gilmore, LA, Dunger, DB, et al. Developmental programming: state-of-the-science and future directions-summary from a Pennington biomedical symposium. Obesity. 2016; 24(5), 10181026.CrossRefGoogle ScholarPubMed
Padmanabhan, V, Cardoso, RC, Puttabyatappa, M. Developmental programming, a pathway to disease. Endocrinology. 2016; 157(4), 13281340.CrossRefGoogle ScholarPubMed
Hochberg, Z, Feil, R, Constancia, M, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011; 32(2), 159224.CrossRefGoogle ScholarPubMed
Duijts, L, Reiss, IK, Brusselle, G, de Jongste, JC. Early origins of chronic obstructive lung diseases across the life course. Eur J Epidemiol. 2014; 29(12), 871885.CrossRefGoogle ScholarPubMed
Harville, EW, Breckner, D, Shu, T, Cooper, M, Bazzano, LA. Establishing a three-generation prospective study: Bogalusa daughters. J Dev Orig Health Dis. 2020; 11(2), 188195.CrossRefGoogle ScholarPubMed
Slade, T, Chapman, C, Swift, W, Keyes, K, Tonks, Z, Teesson, M. Birth cohort trends in the global epidemiology of alcohol use and alcohol-related harms in men and women: systematic review and metaregression. BMJ Open. 2016; 6(10), e011827.CrossRefGoogle ScholarPubMed
Vrijheid, M, Casas, M, Bergström, A, et al. European birth cohorts for environmental health research. Environ Health Perspect. 2012; 120(1), 2937.CrossRefGoogle ScholarPubMed
Welham, J, Isohanni, M, Jones, P, McGrath, J. The antecedents of schizophrenia: a review of birth cohort studies. Schizophr Bull. 2009; 35(3), 603623.CrossRefGoogle ScholarPubMed
Larsen, PS, Kamper-Jørgensen, M, Adamson, A, et al. Pregnancy and birth cohort resources in europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol. 2013; 27(4), 393414.CrossRefGoogle ScholarPubMed
Campbell, A, Rudan, I. Systematic review of birth cohort studies in Africa. J Glob Health. 2011; 1(1), 4658.Google ScholarPubMed
Alduraywish, SA, Lodge, CJ, Campbell, B, et al. The march from early life food sensitization to allergic disease: a systematic review and meta-analyses of birth cohort studies. Allergy. 2016; 71(1), 7789.CrossRefGoogle ScholarPubMed
Pham, MT, Rajić, A, Greig, JD, Sargeant, JM, Papadopoulos, A, McEwen, SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014; 5(4), 371385.CrossRefGoogle ScholarPubMed
Arksey, H, O’Malley, L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005; 8(1), 1932.CrossRefGoogle Scholar
Kuriyama, S, Metoki, H, Kikuya, M, et al. Cohort profile: Tohoku medical megabank project birth and three-generation Cohort study (TMM BirThree Cohort study): rationale, progress and perspective. Int J Epidemiol. 2020; 49(1), 1819m.CrossRefGoogle ScholarPubMed
Felix, JF, Joubert, BR, Baccarelli, AA, et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int J Epidemiol. 2018; 47(1), 2223u.CrossRefGoogle ScholarPubMed
Stolk, RP, Rosmalen, JG, Postma, DS, et al. Universal risk factors for multifactorial diseases: lifeLines: a three-generation population-based study. Eur J Epidemiol. 2008; 23(1), 6774.CrossRefGoogle ScholarPubMed
Townsend, MK, Trabert, B, Fortner, RT, et al. Cohort profile: the ovarian cancer Cohort consortium (OC3). Int J Epidemiol. 2022; 51(3), e73e86.CrossRefGoogle ScholarPubMed
Manolio, TA, Collins, FS, Cox, NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009; 461(7265), 747753.CrossRefGoogle ScholarPubMed
Taouk, L, Schulkin, J. Transgenerational transmission of pregestational and prenatal experience: maternal adversity, enrichment, and underlying epigenetic and environmental mechanisms. J Dev Orig Health Dis. 2016; 7(6), 588601.CrossRefGoogle ScholarPubMed
Vassoler, FM, Sadri-Vakili, G. Mechanisms of transgenerational inheritance of addictive-like behaviors. Neuroscience. 2014; 264, 198206.CrossRefGoogle ScholarPubMed
Karatsoreos, IN, Thaler, JP, Borgland, SL, Champagne, FA, Hurd, YL, Hill, MN. Food for thought: hormonal, experiential, and neural influences on feeding and obesity. J Neurosci. 2013; 33(45), 1761017616.CrossRefGoogle ScholarPubMed
Youngson, NA, Whitelaw, E. Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet. 2008; 9(1), 233257.CrossRefGoogle ScholarPubMed
Heindel, JJ, McAllister, KA, Worth, L Jr., Tyson, FL. Environmental epigenomics, imprinting and disease susceptibility. Ciba F Symp. 2006; 1(1), 16.Google ScholarPubMed
McGee, G, Weisskopf, MG, Kioumourtzoglou, MA, Coull, BA, Haneuse, S. Informatively empty clusters with application to multigenerational studies. Biostatistics. 2020; 21(4), 775789.CrossRefGoogle ScholarPubMed
Harville, EW, Kruse, AN, Zhao, Q. The impact of early-life exposures on women’s reproductive health in adulthood. Curr Epidemiol Rep. 2021; 8(4), 175189.CrossRefGoogle ScholarPubMed
Hallqvist, J, Lynch, J, Bartley, M, Lang, T, Blane, D. Can we disentangle life course processes of accumulation, critical period and social mobility? An analysis of disadvantaged socio-economic positions and myocardial infarction in the stockholm heart epidemiology program. Soc Sci Med. 2004; 58(8), 15551562.CrossRefGoogle ScholarPubMed
Zambrano, E, Martínez-Samayoa, PM, Bautista, CJ, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol. 2005; 566(1), 225236.CrossRefGoogle ScholarPubMed
Fitz-James, MH, Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022; 23(6), 325341.CrossRefGoogle ScholarPubMed
Bošković, A, Rando, OJ. Transgenerational epigenetic inheritance. Annu Rev Genet. 2018; 52(1), 2141.CrossRefGoogle ScholarPubMed
Accordini, S, Calciano, L, Johannessen, A, et al. A three-generation study on the association of tobacco smoking with asthma. Int J Epidemiol. 2018; 47(4), 11061117.CrossRefGoogle Scholar
Mahon, GM, Koppelman, GH, Vonk, JM. Grandmaternal smoking, asthma and lung function in the offspring: the lifelines cohort study. Thorax. 2021; 76(5), 441447.CrossRefGoogle ScholarPubMed
Zimmet, P, Shi, Z, El-Osta, A, Ji, L. Epidemic T2DM, early development and epigenetics: implications of the Chinese famine. Nat Rev Endocrinol. 2018; 14(12), 738746.CrossRefGoogle ScholarPubMed
Heijmans, BT, Tobi, EW, Stein, AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008; 105(44), 1704617049.CrossRefGoogle ScholarPubMed
Lombó, M, Herráez, P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc. 2021; 96(4), 12431262.CrossRefGoogle ScholarPubMed
Greenblatt-Kimron, L, Shrira, A, Rubinstein, T, Palgi, Y. Event centrality and secondary traumatization among Holocaust survivors’ offspring and grandchildren: a three-generation study. J Anxiety Disord. 2021; 81, 102401.CrossRefGoogle ScholarPubMed
Stegemann, R, Buchner, DA. Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol. 2015; 43, 131140.CrossRefGoogle ScholarPubMed
Géa-Horta, T, Silva Rde, C, Fiaccone, RL, Barreto, ML, Velásquez-Meléndez, G. Factors associated with nutritional outcomes in the mother-child dyad: a population-based cross-sectional study. Public Health Nutr. 2016; 19(15), 27252733.CrossRefGoogle ScholarPubMed
Liu, Y, Chen, HJ, Liang, L, Wang, Y. Parent-child resemblance in weight status and its correlates in the United States. PLoS One. 2013; 8(6), e65361.CrossRefGoogle ScholarPubMed
Dearth-Wesley, T, Gordon-Larsen, P, Adair, LS, Zhang, B, Popkin, BM. Longitudinal, cross-cohort comparison of physical activity patterns in Chinese mothers and children. Int J Behav Nutr Phys Act. 2012; 9(1), 39.CrossRefGoogle ScholarPubMed
Kannel, WB, Feinleib, M, McNamara, PM, Garrison, RJ, Castelli, WP. An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol. 1979; 110(3), 281290.CrossRefGoogle ScholarPubMed
Cruickshanks, KJ, Nondahl, DM, Johnson, LJ, et al. Generational differences in the 5-year incidence of age-related macular degeneration. JAMA Ophthalmol. 2017; 135(12), 14171423.CrossRefGoogle ScholarPubMed
Dougan, MM, Willett, WC, Michels, KB. Prenatal vitamin intake during pregnancy and offspring obesity. Int J Obes (Lond). 2015; 39(1), 6974.CrossRefGoogle ScholarPubMed
Kaati, G, Bygren, LO, Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet. 2002; 10(11), 682688.CrossRefGoogle ScholarPubMed
Bygren, LO, Kaati, G, Edvinsson, S. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor. 2001; 49(1), 5359.CrossRefGoogle ScholarPubMed
Li, B, Adab, P, Cheng, KK. The role of grandparents in childhood obesity in China - evidence from a mixed methods study. Int J Behav Nutr Phys Act. 2015; 12(1), 91.CrossRefGoogle Scholar
Kanmiki, EW, Fatima, Y, Mamun, AA. Multigenerational transmission of obesity: a systematic review and meta-analysis. Obes Rev. 2022; 23(3), e13405.CrossRefGoogle ScholarPubMed
Golding, J, Northstone, K, Gregory, S, Miller, LL, Pembrey, M. The anthropometry of children and adolescents may be influenced by the prenatal smoking habits of their grandmothers: a longitudinal cohort study. Am J Hum Biol. 2014; 26(6), 731739.CrossRefGoogle ScholarPubMed
Niiranen, TJ, McCabe, EL, Larson, MG, et al. Risk for hypertension crosses generations in the community: a multi-generational Cohort study. Eur Heart J. 2017; 38(29), 23002308.CrossRefGoogle ScholarPubMed
Emanuel, I, Filakti, H, Alberman, E, Evans, SJ. Intergenerational studies of human birthweight from the 1958 birth cohort. 1. Evidence for a multigenerational effect. Br J Obstet Gynaecol. 1992; 99(1), 6774.CrossRefGoogle ScholarPubMed
Josefsson, A, Vikström, J, Bladh, M, Sydsjö, G. Major depressive disorder in women and risk for future generations: population-based three-generation study. BJPsych Open. 2019; 5(1), e8.CrossRefGoogle ScholarPubMed
Murrin, CM, Kelly, GE, Tremblay, RE, Kelleher, CC. Body mass index and height over three generations: evidence from the lifeways cross-generational cohort study. BMC Public Health. 2012; 12(1), 81.CrossRefGoogle ScholarPubMed
Ranthe, MF, Petersen, JA, Bundgaard, H, Wohlfahrt, J, Melbye, M, Boyd, HA. A detailed family history of myocardial infarction and risk of myocardial infarction--a nationwide cohort study. PLoS One. 2015; 10(5), e0125896.CrossRefGoogle ScholarPubMed
Weissman, MM, Berry, OO, Warner, V, et al. A 30-year study of 3 Generations at high risk and Low risk for depression. Jama Psychiat. 2016; 73(9), 970977.CrossRefGoogle ScholarPubMed
van Steenwyk, G, Roszkowski, M, Manuella, F, Franklin, TB, Mansuy, IM, Skinner, M. Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ Epigenet. 2018; 4(2), dvy023.CrossRefGoogle ScholarPubMed
Levac, D, Colquhoun, H, O’Brien, KK. Scoping studies: advancing the methodology. Implement Sci. 2010; 5(1), 69.CrossRefGoogle ScholarPubMed
Peters, MD, Godfrey, CM, Khalil, H, McInerney, P, Parker, D, Soares, CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015; 13(3), 141146.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tan et al. supplementary material

Tan et al. supplementary material
Download Tan et al. supplementary material(File)
File 46.2 KB