Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-09-06T06:42:43.727Z Has data issue: false hasContentIssue false

Evaluating the bifidogenic effect of various infant formula supplementations: a systematic review and network meta-analysis of randomized controlled trials

Published online by Cambridge University Press:  02 September 2025

Fatemeh Mansouri
Affiliation:
School of Advanced Studies, University of Camerino, Camerino, Italy Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
Mahnaz Mardani
Affiliation:
School of Public Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran Nutritional Health Research Center, Health and Nutrition Department, Lorestan University of Medical Sciences, Khorramabad, Iran
Maryam Rezapour
Affiliation:
Deputy of Food and Drugs, Lorestan University of Medical Sciences, Khorramabad, Iran
Laura Bordoni*
Affiliation:
Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
Rosita Gabbianelli*
Affiliation:
Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
*
Corresponding authors: Laura Bordoni; Email: laura.bordoni@unicam.it; Rosita Gabbianelli; Email: rosita.gabbianelli@unicam.it
Corresponding authors: Laura Bordoni; Email: laura.bordoni@unicam.it; Rosita Gabbianelli; Email: rosita.gabbianelli@unicam.it

Abstract

This study aimed to investigate the effects of infant formula supplements on Bifidobacterium level in the infant gut through a systematic review and network meta-analysis (NMA) of randomized controlled trials (RCTs).

Systematic review included PubMed, EMBASE, MEDLINE, Scopus, Web of Science, and Cochrane CENTRAL to identify RCTs evaluating the effects of formulas supplemented with prebiotics, probiotics, synbiotics, β-palmitic acid, or combinations of β-palmitic acid with prebiotics on infant gut Bifidobacterium levels. A meta-analysis compared bifidogenic effects to standard formula. The main outcome was the relative abundance (RA) of Bifidobacterium in fecal samples measured by various microbiota assessment techniques, with effect sizes as mean differences and standard deviations. An overall effect estimate was derived using a random-effects model. NMA assessed formula effects using breastfeeding as the reference.

Nineteen studies were included. Compared to standard formula, supplementation with prebiotics (p < 0.0001), synbiotics (p < 0.0001), β-palmitic acid (p = 0.0005), or β-palmitic acid combined with prebiotics (p < 0.0001) significantly increased Bifidobacterium levels in the infant gut. Probiotic supplementation showed no significant effect (p = 0.9755). NMA and p-score ranking, comparing formulas to breastmilk, indicated that prebiotic-supplemented formulas with the lowest ranking p-score (0.2764), most closely resembled breastfeeding’s bifidogenic effect. However, prebiotics and probiotics were analyzed as broad categories, and group variability may affect outcomes. In conclusion, formula supplementation with prebiotics, synbiotics, β-palmitic acid, or combinations of β-palmitic acid with prebiotics increased the RA of Bifidobacterium in infant’s gut, with prebiotic formula most closely mimicking the bifidogenic effects of breastfeeding.

Information

Type
Review
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yang, I, Corwin, EJ, Brennan, PA, Jordan, S, Murphy, JR, Dunlop, A. The infant microbiome. Nurs Res. 2016; 65(1), 7688. DOI: 10.1097/NNR.0000000000000133.10.1097/NNR.0000000000000133CrossRefGoogle ScholarPubMed
Cebra, JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr. 1999; 69(5), 1046S1051S. DOI: 10.1093/ajcn/69.5.1046s.10.1093/ajcn/69.5.1046sCrossRefGoogle ScholarPubMed
Saturio, S, Nogacka, AM, Alvarado-Jasso, GM, et al. Role of bifidobacteria on infant health. Microorganisms. 2021; 9(12), 2415. DOI: 10.3390/microorganisms9122415.10.3390/microorganisms9122415CrossRefGoogle ScholarPubMed
Wang, H, Huang, X, Tan, H, Chen, X, Chen, C, Nie, S. Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food Chem. 2022; 393, 133407. DOI: 10.1016/j.foodchem.2022.133407.10.1016/j.foodchem.2022.133407CrossRefGoogle ScholarPubMed
LeBlanc, JG, Chain, F, Martín, R, Bermúdez-Humarán, LG, Courau, S, Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017; 16(1), 79. DOI: 10.1186/s12934-017-0691-z.10.1186/s12934-017-0691-zCrossRefGoogle ScholarPubMed
Milani, C, Duranti, S, Bottacini, F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol R. 2017; 81(4), e00036-17. DOI: 10.1128/MMBR.00036-17.10.1128/MMBR.00036-17CrossRefGoogle ScholarPubMed
Sutharsan, R, Mannan, M, Doi, SA, Mamun, AA. Caesarean delivery and the risk of offspring overweight and obesity over the life course: a systematic review and bias-adjusted meta-analysis. Clin Obes. 2015; 5(6), 293301. DOI: 10.1111/cob.12114.10.1111/cob.12114CrossRefGoogle ScholarPubMed
Korpela, K, Zijlmans, MAC, Kuitunen, M, et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017; 5(1), 26. DOI: 10.1186/s40168-017-0245-y.10.1186/s40168-017-0245-yCrossRefGoogle ScholarPubMed
Li, Y, Ren, L, Wang, Y, et al. The effect of breast milk microbiota on the composition of infant gut microbiota: a cohort study. Nutrients. 2022; 14(24), 5397. DOI: 10.3390/nu14245397.10.3390/nu14245397CrossRefGoogle ScholarPubMed
Gibson, GR, Roberfroid, MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995; 125(6), 14011412. DOI: 10.1093/jn/125.6.1401.10.1093/jn/125.6.1401CrossRefGoogle ScholarPubMed
Hill, C, Guarner, F, Reid, G, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11(8), 506514. DOI: 10.1038/nrgastro.2014.66.10.1038/nrgastro.2014.66CrossRefGoogle ScholarPubMed
Swanson, KS, Gibson, GR, Hutkins, R, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020; 17(11), 687701. DOI: 10.1038/s41575-020-0344-2.10.1038/s41575-020-0344-2CrossRefGoogle ScholarPubMed
Yaron, S, Shachar, D, Abramas, L, et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013; 56(4), 376381. DOI: 10.1097/MPG.0b013e31827e1ee2.10.1097/MPG.0b013e31827e1ee2CrossRefGoogle ScholarPubMed
Giuffrida, F, Marmet, C, Tavazzi, I, et al. Quantification of 1,3-olein-2-palmitin (OPO) and palmitic acid in sn-2 position of triacylglycerols in human milk by liquid chromatography coupled with mass spectrometry. Molecules. 2018; 24(1), 22. DOI: 10.3390/molecules24010022.10.3390/molecules24010022CrossRefGoogle Scholar
Borewicz, K, Brück, WM. Supplemented infant formula and human breast milk show similar patterns in modulating infant microbiota composition and function in vitro. Int J Mol Sci. 2024; 25(3), 1806. DOI: 10.3390/ijms25031806.10.3390/ijms25031806CrossRefGoogle ScholarPubMed
Tonon, KM, Salgaço, MK, Mesa, V, et al. Infant formula with 2′-FL + LNnT positively modulates the infant gut microbiome: an in vitro study using human intestinal microbial ecosystem model. Int Dairy J. 2023; 139, 105558. DOI: 10.1016/j.idairyj.2022.105558.10.1016/j.idairyj.2022.105558CrossRefGoogle Scholar
Chen, Q, Xie, Q, Jiang, C, et al. Infant formula supplemented with 1,3-olein-2-palmitin regulated the immunity, gut microbiota, and metabolites of mice colonized by feces from healthy infants. J Dairy Sci. 2022; 105(8), 64056421. DOI: 10.3168/jds.2021-21736.10.3168/jds.2021-21736CrossRefGoogle Scholar
Borewicz, K, Suarez-Diez, M, Hechler, C, et al. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci Rep. 2019; 9(1), 2434. DOI: 10.1038/s41598-018-38268-x.10.1038/s41598-018-38268-xCrossRefGoogle ScholarPubMed
Alliet, P, Vandenplas, Y, Roggero, P, et al. Safety and efficacy of a probiotic-containing infant formula supplemented with 2’-fucosyllactose: a double-blind randomized controlled trial. Nutr J. 2022; 21(1), 11. DOI: 10.1186/s12937-022-00764-2.10.1186/s12937-022-00764-2CrossRefGoogle ScholarPubMed
Béghin, L, Tims, S, Roelofs, M, et al. Fermented infant formula (with bifidobacterium breve C50 and streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clin Nutr. 2021; 40(3), 778787. DOI: 10.1016/j.clnu.2020.07.024.10.1016/j.clnu.2020.07.024CrossRefGoogle ScholarPubMed
Berger, B, Porta, N, Foata, F, et al. Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio. 2020; 11(2), e03196-19. DOI: 10.1128/mBio.03196-19.10.1128/mBio.03196-19CrossRefGoogle ScholarPubMed
Bosheva, M, Tokodi, I, Krasnow, A, et al. Infant formula with a specific blend of five human milk oligosaccharides drives the gut microbiota development and improves gut maturation markers: a randomized controlled trial. Front Nutr. 2022; 9, 920362. DOI: 10.3389/fnut.2022.920362.10.3389/fnut.2022.920362CrossRefGoogle ScholarPubMed
Brunser, O, Figueroa, G, Gotteland, M, et al. Effects of probiotic or prebiotic supplemented milk formulas on fecal microbiota composition of infants. Asia Pac J Clin Nutr. 2006; 15(3), 368376.Google ScholarPubMed
Closa-Monasterolo, R, Gispert-Llaurado, M, Luque, V, et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr. 2013; 32(6), 918927. DOI: 10.1016/j.clnu.2013.02.009.10.1016/j.clnu.2013.02.009CrossRefGoogle ScholarPubMed
Estorninos, E, Lawenko, RB, Palestroque, E, et al. Term infant formula supplemented with milk-derived oligosaccharides shifts the gut microbiota closer to that of human milk-fed infants and improves intestinal immune defense: a randomized controlled trial. Am J Clin Nutr. 2022; 115(1), 142153. DOI: 10.1093/ajcn/nqab336.10.1093/ajcn/nqab336CrossRefGoogle ScholarPubMed
Guo, D, Li, F, Zhao, J, et al. Effect of an infant formula containing sn-2 palmitate on fecal microbiota and metabolome profiles of healthy term infants: a randomized, double-blind, parallel, controlled study. Food Funct. 2022; 13(4), 20032018. DOI: 10.1039/D1FO03692K.10.1039/D1FO03692KCrossRefGoogle ScholarPubMed
Haarman, M, Knol, J. Quantitative real-time PCR assays to identify and quantify fecal, bifidobacterium, species in infants receiving a prebiotic infant formula. Appl Environ Microbiol. 2005; 71(5), 23182324. DOI: 10.1128/AEM.71.5.2318-2324.2005.10.1128/AEM.71.5.2318-2324.2005CrossRefGoogle ScholarPubMed
Holscher, HD, Faust, KL, Czerkies, LA, et al. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. Jpen-PARENTER Enter. 2012; 36(1S), 95S105S. DOI: 10.1177/0148607111430087.10.1177/0148607111430087CrossRefGoogle ScholarPubMed
Lagkouvardos, I, Intze, E, Schaubeck, M, et al. Early life gut microbiota profiles linked to synbiotic formula effects: a randomized clinical trial in european infants. Am J Clin Nutr. 2023; 117(2), 326339. DOI: 10.1016/j.ajcnut.2022.11.012.10.1016/j.ajcnut.2022.11.012CrossRefGoogle ScholarPubMed
Looijesteijn, E, Brouwer, RWW, Schoemaker, RJW, et al. Effect of bovine milk fat-based infant formulae on microbiota, metabolites and stool parameters in healthy term infants in a randomized, crossover, placebo-controlled trial. BMC Nutr. 2022; 8(1), 93. DOI: 10.1186/s40795-022-00575-y.10.1186/s40795-022-00575-yCrossRefGoogle Scholar
Mah, KW, Chin, VIL, Wong, WS, et al. Effect of a milk formula containing probiotics on the fecal microbiota of asian infants at risk of atopic diseases. Pediatr Res. 2007; 62(6), 674679. DOI: 10.1203/PDR.0b013e31815991d5.10.1203/PDR.0b013e31815991d5CrossRefGoogle ScholarPubMed
Neumer, F, Urraca, O, Alonso, J, et al. Long-term safety and efficacy of prebiotic enriched infant formula—A randomized controlled trial. Nutrients. 2021; 13(4), 1276. DOI: 10.3390/nu13041276.10.3390/nu13041276CrossRefGoogle ScholarPubMed
Nomayo, A, Schwiertz, A, Rossi, R, et al. Infant formula with cow’s milk fat and prebiotics affects intestinal flora, but not the incidence of infections during infancy in a double-blind randomized controlled trial. Mol Cell Pediatr. 2020; 7(1), 6. DOI: 10.1186/s40348-020-00098-1.10.1186/s40348-020-00098-1CrossRefGoogle ScholarPubMed
Phavichitr, N, Wang, S, Chomto, S, et al. Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study. Sci Rep. 2021; 11(1), 3534. DOI: 10.1038/s41598-021-83009-2.10.1038/s41598-021-83009-2CrossRefGoogle ScholarPubMed
Roggero, P, Liotto, N, Pozzi, C, et al. Analysis of immune, microbiota and metabolome maturation in infants in a clinical trial of lactobacillus paracasei CBA L74-fermented formula. Nat Commun. 2020; 11(1), 2703. DOI: 10.1038/s41467-020-16582-1.10.1038/s41467-020-16582-1CrossRefGoogle Scholar
Schmelzle, H, Wirth, S, Skopnik, H, et al. Randomized double-blind study of the nutritional efficacy and bifidogenicity of a new infant formula containing partially hydrolyzed protein, a high β-palmitic acid level, and nondigestible oligosaccharides. J Pediatr Gastroenterol Nutr. 2003; 36(3), 343351. DOI: 10.1097/00005176-200303000-00008.Google ScholarPubMed
Wu, W, Zhao, A, Liu, B, et al. Neurodevelopmental outcomes and gut bifidobacteria in term infants fed an infant formula containing high sn-2 palmitate: a cluster randomized clinical trial. Nutrients. 2021; 13(2), 693. DOI: 10.3390/nu13020693.10.3390/nu13020693CrossRefGoogle ScholarPubMed
D., PAINEAU, F., RESPONDEK, V., MENET, R., SAUVAGE, F., BORNET, A., WAGNER. Effects of short-chain fructooligosaccharides on faecal bifidobacteria and specific immune response in formula-fed term infants: a randomized, double-blind, placebo-controlled trial. J Nutr Sci Vitaminol (Tokyo). 2014; 60(3), 167175. DOI: 10.3177/jnsv.60.167.Google Scholar
Wernimont, S, Northington, R, Kullen, MJ, Yao, M, Bettler, J. Effect of an α-lactalbumin-enriched infant formula supplemented with oligofructose on fecal microbiota, stool characteristics, and hydration status. Clin Pediatr (Phila). 2015; 54(4), 359370. DOI: 10.1177/0009922814553433.10.1177/0009922814553433CrossRefGoogle ScholarPubMed
Boulangé, CL, Pedersen, HK, Martin, FP, et al. An extensively hydrolyzed formula supplemented with two human milk oligosaccharides modifies the fecal microbiome and metabolome in infants with cow’s milk protein allergy. Int J Mol Sci. 2023; 24(14), 11422. DOI: 10.3390/ijms241411422.10.3390/ijms241411422CrossRefGoogle ScholarPubMed
Nakamura, N, Gaskins, HR, Collier, CT, et al. Molecular ecological analysis of fecal bacterial populations from term infants fed formula supplemented with selected blends of prebiotics. Appl Environ Microbiol. 2009; 75(4), 11211128. DOI: 10.1128/AEM.02359-07.10.1128/AEM.02359-07CrossRefGoogle ScholarPubMed
Salvini, F, Riva, E, Salvatici, E, et al. A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. J Nutr. 2011; 141(7), 13351339. DOI: 10.3945/jn.110.136747.10.3945/jn.110.136747CrossRefGoogle ScholarPubMed
Sierra, C, Bernal, MJ, Blasco, J, et al. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trial. Eur J Nutr. 2015; 54(1), 8999. DOI: 10.1007/s00394-014-0689-9.10.1007/s00394-014-0689-9CrossRefGoogle Scholar
Giovannini, M, Verduci, E, Gregori, D, et al. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial. J Am Coll Nutr. 2014; 33(5), 385393. DOI: 10.1080/07315724.2013.878232.10.1080/07315724.2013.878232CrossRefGoogle ScholarPubMed
Matsuki, T, Tajima, S, Hara, T, Yahagi, K, Ogawa, E, Kodama, H. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes. 2016; 7(4), 453462. DOI: 10.3920/BM2015.0168.10.3920/BM2015.0168CrossRefGoogle ScholarPubMed
Garcia Rodenas, CL, Lepage, M, Ngom-Bru, C, Fotiou, A, Papagaroufalis, K, Berger, B. Effect of formula containing, lactobacillus reuteri, DSM 17938 on fecal microbiota of infants born by cesarean-section. J Pediatr Gastroenterol Nutr. 2016; 63(6), 681687. DOI: 10.1097/MPG.0000000000001198.10.1097/MPG.0000000000001198CrossRefGoogle ScholarPubMed
Campeotto, F, Suau, A, Kapel, N, et al. A fermented formula in pre-term infants: clinical tolerance, gut microbiota, down-regulation of faecal calprotectin and up-regulation of faecal secretory igA. Brit J Nutr. 2011; 105(12), 18431851. DOI: 10.1017/S0007114510005702.10.1017/S0007114510005702CrossRefGoogle ScholarPubMed
Hascoët, J, Hubert, C, Rochat, F, et al. Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr. 2011; 52(6), 756762. DOI: 10.1097/MPG.0b013e3182105850.10.1097/MPG.0b013e3182105850CrossRefGoogle ScholarPubMed
Radke, M, Picaud, JC, Loui, A, et al. Starter formula enriched in prebiotics and probiotics ensures normal growth of infants and promotes gut health: a randomized clinical trial. Pediatr Res. 2017; 81(4), 622631. DOI: 10.1038/pr.2016.270.10.1038/pr.2016.270CrossRefGoogle ScholarPubMed
Simeoni, U, Berger, B, Junick, J, et al. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and <scp> B </scp> ifidobacterium animalis subsp. lactis <scp>CNCM I</scp> -3446. Environ Microbiol. 2016; 18(7), 21852195. DOI: 10.1111/1462-2920.13144.10.1111/1462-2920.13144CrossRefGoogle Scholar
Rozé, JC, Barbarot, S, Butel, MJ, et al. An α-lactalbumin-enriched and symbiotic-supplemented v. a standard infant formula: a multicentre, double-blind, randomised trial. Brit J Nutr. 2012; 107(11), 16161622. DOI: 10.1017/S000711451100479X.10.1017/S000711451100479XCrossRefGoogle Scholar
Civardi, E, Garofoli, F, Longo, S, et al. Safety, growth, and support to healthy gut microbiota by an infant formula enriched with functional compounds. Clin Nutr. 2017; 36(1), 238245. DOI: 10.1016/j.clnu.2015.11.006.10.1016/j.clnu.2015.11.006CrossRefGoogle Scholar
Yao, M, Lien, EL, Capeding, MRZ, et al. Effects of term infant formulas containing high sn -2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity. J Pediatr Gastroenterol Nutr. 2014; 59(4), 440448. DOI: 10.1097/MPG.0000000000000443.10.1097/MPG.0000000000000443CrossRefGoogle ScholarPubMed
Castanet, M, Costalos, C, Haiden, N, et al. Early effect of supplemented infant formulae on intestinal biomarkers and microbiota: a randomized clinical trial. Nutrients. 2020; 12(5), 1481. DOI: 10.3390/nu12051481.10.3390/nu12051481CrossRefGoogle ScholarPubMed
Srinivasjois, R, Rao, S, Patole, S. Prebiotic supplementation of formula in preterm neonates: a systematic review and meta-analysis of randomised controlled trials. Clin Nutr. 2009; 28(3), 237242. DOI: 10.1016/j.clnu.2009.03.008.10.1016/j.clnu.2009.03.008CrossRefGoogle ScholarPubMed
Ferro, LE, Crowley, LN, Bittinger, K, et al. Effects of prebiotics, probiotics, and synbiotics on the infant gut microbiota and other health outcomes: a systematic review. Crit Rev Food Sci Nutr. 2023; 63(22), 56205642. DOI: 10.1080/10408398.2021.2022595.10.1080/10408398.2021.2022595CrossRefGoogle ScholarPubMed
Indrio, F, Gutierrez Castrellon, P, Vandenplas, Y, et al. Health effects of infant formula supplemented with probiotics or synbiotics in infants and toddlers. Systematic Review with Network Meta-Analysis. Nutrients. 2022; 14(23), 5175. DOI: 10.3390/nu14235175.Google ScholarPubMed
EndNote. (2022). Published onlineGoogle Scholar
Moher, D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151(4), 264. DOI: 10.7326/0003-4819-151-4-200908180-00135.10.7326/0003-4819-151-4-200908180-00135CrossRefGoogle ScholarPubMed
Sterne, JAC, Savović, J, Page, MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. Published online August. 2019; 28, l4898. DOI: 10.1136/bmj.l4898.Google Scholar
Higgins, JPT, Thomas, J, Chandler, J, Cumpston, M, Li, T, Page, MJ, Welch, VA (editors). Cochrane Handbook for Systematic Reviews of Interventions, 2nd Edition, 2019. John Wiley & Sons, Chichester (UK).10.1002/9781119536604CrossRefGoogle Scholar
Higgins, JPT. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414), 557560. DOI: 10.1136/bmj.327.7414.557.10.1136/bmj.327.7414.557CrossRefGoogle ScholarPubMed
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010; 36(3), 148. DOI: 10.18637/jss.v036.i03.10.18637/jss.v036.i03CrossRefGoogle Scholar
Bucher, HC, Guyatt, GH, Griffith, LE, Walter, SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997; 50(6), 683691. DOI: 10.1016/S0895-4356(97)00049-8.10.1016/S0895-4356(97)00049-8CrossRefGoogle ScholarPubMed
Lin, L. Quantifying and presenting overall evidence in network meta-analysis. Stat Med. 2018; 37(28), 41144125. DOI: 10.1002/sim.7905.10.1002/sim.7905CrossRefGoogle ScholarPubMed
Salanti, G, Ades, AE, Ioannidis, JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011; 64(2), 163171. DOI: 10.1016/j.jclinepi.2010.03.016.10.1016/j.jclinepi.2010.03.016CrossRefGoogle ScholarPubMed
Parks, D, Ferrante, S. A frequentist framework for automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Value Health. 2018; 21, S101. DOI: 10.1016/j.jval.2018.07.765.10.1016/j.jval.2018.07.765CrossRefGoogle Scholar
RStudio:Integrated Development Environment for R, Version 2023.12.1+402. Published online RStudio, PBC, 2023. https://www.rstudio.com.Google Scholar
Rücker, G, Schwarzer, G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol. 2015; 15(1), 58. DOI: 10.1186/s12874-015-0060-8.10.1186/s12874-015-0060-8CrossRefGoogle ScholarPubMed
Sterne, JAC, Gavaghan, D, Egger, M. Publication and related bias in meta-analysis. J Clin Epidemiol. 2000; 53(11), 11191129. DOI: 10.1016/S0895-4356(00)00242-0.10.1016/S0895-4356(00)00242-0CrossRefGoogle ScholarPubMed
Schwarzer, G, Carpenter, JR, Rücker, G. Meta-Analysis with R, 2015. Springer International Publishing, Springer Cham. DOI: 10.1007/978-3-319-21416-0 10.1007/978-3-319-21416-0CrossRefGoogle Scholar
Brignardello-Petersen, R, Murad, MH, Walter, SD, et al. GRADE approach to rate the certainty from a network meta-analysis: avoiding spurious judgments of imprecision in sparse networks. J Clin Epidemiol. 2019; 105, 6067. DOI: 10.1016/j.jclinepi.2018.08.022.10.1016/j.jclinepi.2018.08.022CrossRefGoogle ScholarPubMed
Nikolakopoulou, A, Higgins, JPT, Papakonstantinou, T, et al. CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020; 17(4), e1003082. DOI: 10.1371/journal.pmed.1003082.10.1371/journal.pmed.1003082CrossRefGoogle ScholarPubMed
Rinne, MM, Gueimonde, M, Kalliomäki, M, Hoppu, U, Salminen, SJ, Isolauri, E. Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol Med Microbiol. 2005; 43(1), 5965. DOI: 10.1016/j.femsim.2004.07.005.10.1016/j.femsim.2004.07.005CrossRefGoogle ScholarPubMed
Chi, C, Xue, Y, Liu, R, et al. Effects of a formula with a probiotic bifidobacterium lactis supplement on the gut microbiota of low birth weight infants. Eur J Nutr. 2020; 59(4), 14931503. DOI: 10.1007/s00394-019-02006-4.10.1007/s00394-019-02006-4CrossRefGoogle ScholarPubMed
Mao, B, Gu, J, Li, D, et al. Effects of different doses of fructooligosaccharides (FOS) on the composition of mice fecal microbiota, especially the bifidobacterium composition. Nutrients. 2018; 10(8), 1105. DOI: 10.3390/nu10081105.10.3390/nu10081105CrossRefGoogle ScholarPubMed
Louis, P, Flint, HJ, Michel, C. How to manipulate the microbiota: prebiotics. In: Microbiota of the Human Body: Implications in Health and Disease, 2016; 902, pp. 119142. DOI: 10.1007/978-3-319-31248-4_9.10.1007/978-3-319-31248-4_9CrossRefGoogle ScholarPubMed
Davani-Davari, D, Negahdaripour, M, Karimzadeh, I, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019; 8(3), 92. DOI: 10.3390/foods8030092.10.3390/foods8030092CrossRefGoogle ScholarPubMed
Ashaolu, TJ, Ashaolu, JO, Adeyeye, SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol. 2021; 130(3), 677687. DOI: 10.1111/jam.14843.10.1111/jam.14843CrossRefGoogle ScholarPubMed
Stecher, B, Hardt, WD. The role of microbiota in infectious disease. Trends Microbiol. 2008; 16(3), 107114. DOI: 10.1016/j.tim.2007.12.008.10.1016/j.tim.2007.12.008CrossRefGoogle ScholarPubMed
Wendel, U. Assessing viability and stress tolerance of probiotics—A review. Front Microbiol. 2022; 12, 818468. DOI: 10.3389/fmicb.2021.818468.10.3389/fmicb.2021.818468CrossRefGoogle ScholarPubMed
Mohanty, D, Misra, S, Mohapatra, S, Sahu, PS. Prebiotics and synbiotics: recent concepts in nutrition. Food Biosci. 2018; 26, 152160. DOI: 10.1016/j.fbio.2018.10.008.10.1016/j.fbio.2018.10.008CrossRefGoogle Scholar
Hamasalim, HJ. Synbiotic as feed additives relating to animal health and performance. Adv Microbiol. 2016; 06(04), 288302. DOI: 10.4236/aim.2016.64028.10.4236/aim.2016.64028CrossRefGoogle Scholar
Gourbeyre, P, Denery, S, Bodinier, M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol. 2011; 89(5), 685695. DOI: 10.1189/jlb.1109753.10.1189/jlb.1109753CrossRefGoogle ScholarPubMed
Manigandan, T, Mangaiyarkarasi, SP, Hemalatha, R, et al., A Review. Biomedical & Pharmacology Journal. 2012; 5(2), 295304. DOI: 10.13005/bpj/357.10.13005/bpj/357CrossRefGoogle Scholar
Bar-Yoseph, F, Lifshitz, Y, Cohen, T, Malard, P, Xu, C. SN2-palmitate reduces fatty acid excretion in chinese formula-fed infants. J Pediatr Gastroenterol Nutr. 2016; 62(2), 341347. DOI: 10.1097/MPG.0000000000000971.10.1097/MPG.0000000000000971CrossRefGoogle ScholarPubMed
Tomarelli, RM, Meyer, BJ, Weaber, JR, Bernhart, FW. Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J Nutr. 1968; 95(4), 583590. DOI: 10.1093/jn/95.4.583.10.1093/jn/95.4.583CrossRefGoogle ScholarPubMed
Shoji, H, Arai, H, Kakiuchi, S, et al. Infant formula with 50% or more of palmitic acid bound to the sn-2 position of triacylglycerols eliminate the association between formula-feeding and the increase of fecal palmitic acid levels in newborns: an exploratory study. Nutrients. 2024; 16(11), 1558. DOI: 10.3390/nu16111558.10.3390/nu16111558CrossRefGoogle ScholarPubMed
Supplementary material: File

Mansouri et al. supplementary material

Mansouri et al. supplementary material
Download Mansouri et al. supplementary material(File)
File 2.8 MB