Skip to main content Accessibility help
×
Home

Maternal predictors of neonatal bone size and geometry: the Southampton Women’s Survey

  • N. C. Harvey (a1), M. K. Javaid (a1), N. K. Arden (a1), J. R. Poole (a1), S. R. Crozier (a1), S. M. Robinson (a1), H. M. Inskip (a1), K. M. Godfrey (a1), E. M. Dennison (a1), C. Cooper (a1) and the SWS Study Team...

Abstract

Early growth is associated with later risk of osteoporosis and fractures. In this study, we aimed to evaluate the relationships between maternal lifestyle and body composition and neonatal bone size, geometry and density in the offspring. Participants were recruited from the Southampton Women’s Survey, a unique prospective cohort of 12,500 initially non-pregnant women aged 20–34 years, resident in Southampton, UK. These women were studied in detail before and during pregnancy, and the offspring underwent anthropometric and bone mineral assessment (using dual energy-X-ray absorptiometry) at birth. A total of 841 mother–baby pairs were studied (443 boys and 398 girls). The independent predictors of greater neonatal whole body bone area (BA) and bone mineral content included greater maternal birthweight, height, parity, triceps skinfold thickness and lower walking speed in late pregnancy. Maternal smoking was independently associated with lower neonatal bone mass. Neonatal BA adjusted for birth length (a measure of bone width) was predicted positively by maternal parity and late pregnancy triceps skinfold thickness and negatively by late pregnancy walking speed. These findings were similar in both genders. We have confirmed, in a large cohort, previous findings that maternal lifestyle and body build predict neonatal bone mineral; additionally, maternal parity and fat stores and walking speed in late pregnancy were associated with neonatal bone geometry. These findings may suggest novel public health strategies to reduce the burden of osteoporotic fracture in future generations.

Copyright

References

Hide All
1.Hernandez, CJ, Beaupre, GS, Carter, DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003; 14, 843847.
2.Cooper, C, Cawley, M, Bhalla, A, et al. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res. 1995; 10, 940947.
3.Dennison, EM, Aihie-Sayer, A, Syddall, H, et al. Birthweight is associated with bone mass in the seventh decade: the Hertfordshire 31–39 Study. Pediatr Res. 2005; 57, 582586.
4.Cooper, C, Eriksson, JG, Forsen, T, et al. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int. 2001; 12, 623629.
5.Godfrey, K, Walker-Bone, K, Robinson, S, et al. Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res. 2001; 16, 16941703.
6.Jones, G, Riley, M, Dwyer, T. Maternal smoking during pregnancy, growth, and bone mass in prepubertal children. J Bone Miner Res. 2000; 14, 146151.
7.Jones, G, Riley, MD, Dwyer, T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr. 2000; 54, 749756.
8.Szulc, P, Munoz, F, Duboeuf, F, Marchand, F, Delmas, PD. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men – the MINOS study. Bone. 2006; 38, 595602.
9.Inskip, HM, Godfrey, KM, Robinson, SM, et al. Cohort profile: The Southampton Women’s Survey. Int J Epidemiol. 2006; 35, 4248.
10.Robinson, S, Godfrey, K, Osmond, C, Cox, V, Barker, D. Evaluation of a food frequency questionnaire used to assess nutrient intakes in pregnant women. Eur J Clin Nutr. 1996; 50, 302308.
11.Abrams, SA, Schanler, RJ, Sheng, HP, Evans, HJ, Leblanc, AD, Garza, C. Bone mineral content reflects total body calcium in neonatal miniature piglets. Pediatr Res. 1988; 24, 693695.
12.Ravaglia, G, Forti, P, Maioli, F, et al. Measurement of body fat in healthy elderly men: a comparison of methods. J Gerontol A Biol Sci Med Sci. 1999; 54, M70M76.
13.Abrams, SA, Schanler, RJ, Sheng, HP, et al. Bone mineral content reflects total body calcium in neonatal miniature piglets. Pediatr Res. 1988; 24, 693695.
14.Lin, FJ, Fitzpatrick, JW, Iannotti, CA, et al. Effects of cadmium on trophoblast calcium transport. Placenta. 1997; 18, 341356.
15.Molgaard, C, Thomsen, BL, Michaelsen, KF. Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta Paediatr. 1998; 87, 494499.
16.Clark, EM, Ness, AR, Bishop, NJ, Tobias, JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006; 21, 14891495.
17.Szulc, P. Bone density, geometry, and fracture in elderly men. Curr Osteoporos Rep. 2006; 4, 5763.
18.Javaid, MK, Lekamwasam, S, Clark, J, et al. Infant growth influences proximal femoral geometry in adulthood. J Bone Miner Res. 2006; 21, 508512.
19.Little, RE. Mother’s and father’s birthweight as predictors of infant birthweight. Paediatr Perinat Epidemiol. 1987; 1, 1931.
20.Dennison, EM, Syddall, HE, Sayer, AA, Gilbody, HJ, Cooper, C. Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res. 2005; 57, 582586.
21.Javaid, MK, Eriksson, JG, Valimaki, MJ, et al. Growth in infancy and childhood predicts hip fracture risk in late adulthood. Bone. 2005; 36(supplement 1), S38 (abstract).
22.Barker, DJ, Eriksson, JG, Forsen, T, Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002; 31, 12351239.

Keywords

Maternal predictors of neonatal bone size and geometry: the Southampton Women’s Survey

  • N. C. Harvey (a1), M. K. Javaid (a1), N. K. Arden (a1), J. R. Poole (a1), S. R. Crozier (a1), S. M. Robinson (a1), H. M. Inskip (a1), K. M. Godfrey (a1), E. M. Dennison (a1), C. Cooper (a1) and the SWS Study Team...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed