Skip to main content
×
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Update on: a meta-analysis of sperm donation offspring health outcomes – 2018 update
        Available formats
        ×
        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Update on: a meta-analysis of sperm donation offspring health outcomes – 2018 update
        Available formats
        ×
        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Update on: a meta-analysis of sperm donation offspring health outcomes – 2018 update
        Available formats
        ×
Export citation

Dear Editor,

In 2017 our team published a meta-analysis on the health outcomes of offspring conceived from donor sperm. 1 At the time of this review, there were only eight studies that were eligible for inclusion, and only three qualified for meta-analysis, 2 4 and only two studies provided data for each outcome analysis. Our review demonstrated the paucity of studies investigating the perinatal outcomes of sperm donation.

After identifying this gap in research, we undertook a population study comparing the perinatal outcomes for neonates conceived with donor sperm and those conceived spontaneously in the state of South Australia. 5 Furthermore, since the census date of the meta-analysis a further two studies have been published that also meet the criteria of our original review, 6 , 7 and we believed it was important that we add these three studies (two by other authors and one by ourselves), to our meta-analysis to see if the original findings were either supported or refuted.

The original findings showed that; donor sperm neonates in comparison to naturally conceived neonates were not at increased risk of being born of low birth weight [risk ratio (RR): 1.04, 95% confidence interval (CI): 0.86–1.25, P-value (P)=0.71, I2=0%]; preterm (RR: 0.91, CI: 0.75–1.12, P=0.38, I2=0%); or with increased incidences of birth defects (RR: 1.20, CI: 0.97–1.48, P=0.09, I2=57%). 1

The addition of the new studies allowed not only for an increase in the number of studies included in the meta-analysis conducted above but also for a larger range of perinatal outcomes. All data extraction and analysis followed the method described in our original review. The studies that were included in each meta-analysis are listed as reference numbers in superscript after each meta-analysis.

The updated meta-analysis has demonstrated that, in comparison to naturally conceived neonates, donor sperm neonates were at increased risk of being born of low birth weight (RR: 1.17, CI: 1.03–1.33, P=0.02, I2=52%), 3 7 and with increased incidences of birth defects (RR: 1.30, CI: 1.05–1.59, P=0.01, I2=72%) (Fig. 1). 2 , 4 , 6 However, they were not at increased risk of being born preterm (RR: 1.05, CI: 0.91–1.21, P=0.47, I2=52%), 3 5 , 7 very preterm (<32 weeks) (RR: 1.17, CI: 0.75–1.81, P=0.49, I2=0%), 5 , 7 very low birth weight (<1500 g) (RR: 1.22, CI: 0.76–1.97, P=0.4, I2=0%), 5 , 7 small for gestational age (birth weight <10th percentile) (RR: 1.19, CI: 0.99–1.42, P=0.06, I2=82%), 5 , 7 large for gestational age (birth weight>90th percentile) (RR: 1.04, CI: 0.86–1.38, P=0.71, I2=0%), 5 , 7 with altered perinatal mortality (RR: 0.93, CI: 0.59–1.45, P=0.74, I2=0%), 5 , 7 of lower mean birth weight (mean difference −12.5 g, CI: −32.03 to 7.02 g, P=0.21, I2=0%), 3 , 5 7 or of lower mean gestational age (mean difference −0.02 weeks, CI: −0.10 to 0.05 weeks, P=0.55, I2=12%). 5 , 7

Fig. 1 Forest plots of sperm donation outcomes. (a) Risk ratio for being born of low birth weight (<2500 g); (b) risk ratio for incidences of birth defects, neonates from donor sperm offspring v. spontaneous conceptions. CI, confidence interval.

Of the newly included studies, one appropriately stratified data into singletons v. multiple deliveries, 5 whereas another only analysed singletons 7 to remove confounding from multiple births. All three studies reported maternal ages, two of which adjusted for maternal age, 5 , 7 whereas the other had no significant difference between maternal ages of those conceiving with donor sperm v. spontaneous conception. 6 Parity was appropriately adjusted for in two of the newly included studies. 5 , 7

Caution should be taken when interpreting these results. Due to the heterogeneity present in some analysis, bias observed through funnel plot analysis, and the low number of studies included in some meta-analysis, more studies investigating perinatal outcomes in donor sperm-conceived neonates in comparison to spontaneously conceived counterparts in a systematic manner is required to improve our understanding of the effects of using donor sperm in assisted reproduction. Furthermore, the use of specific ovarian stimulation drugs such as clomiphene citrate during fertility treatment (including intrauterine insemination with donor sperm), is associated with increased incidences of poor neonatal outcomes. 7 , 8

Results showed that there was an increased risk of low birth weight, but not a concomitant increased risk of preterm delivery. We did not conduct a meta-analysis of data for obstetric outcomes, only neonatal outcomes, and therefore cannot comment on any correlation with early obstetric intervention or delivery methods such as caesarean section. However, some studies did report higher incidences of caesarean section, 4 , 6 , 7 induction of labour 4 , 7 and forceps delivery, 4 , 6 in their donor sperm-conceived cohort which may have potentially been associated with those low birth weight incidences. These reported obstetric intervention increases nonetheless did not adversely affect the continuous outcome measures of mean gestational age or mean birth weight.

The addition of these three studies has improved the meta-analysis of perinatal outcomes for donor-conceived neonates in comparison to those conceived spontaneously. This updated meta-analysis has shown an increase in the risk of donor sperm-conceived neonates being born of low birth weight and with an increased risk of being born with birth defects. This increased risk presents concerns for clinicians and patients when deciding to use a sperm donor. It also shows that previous notions that donor sperm-conceived neonates are no different to their spontaneously conceived peers may have been premature. Whether such altered risk is a result of increased incidences of preeclampsia in the donor sperm cohort, 9 the use of sperm cryopreservation techniques inducing DNA damage, 10 ovarian stimulation drugs, 7 , 8 obstetric intervention or a combination thereof, is unclear.

Acknowledgements

D.A. is supported by an Australian Government Research Training Program Scholarship.

References

1. Adams, DH, Clark, RA, Davies, MJ, de Lacey, S. A meta-analysis of sperm donation offspring health outcomes. J Dev Orig Health Dis. 2017; 8, 4455.
2. Davies, MJ, Moore, VM, Willson, KJ, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012; 366, 18031813.
3. Gaudoin, M, Dobbie, R, Finlayson, A, et al. Ovulation induction/intrauterine insemination in infertile couples is associated with low-birth-weight infants. Am J Obstet Gynecol. 2003; 188, 611616.
4. Hoy, J, Venn, A, Halliday, J, Kovacs, G, Waalwyk, K. Perinatal and obstetric outcomes of donor insemination using cryopreserved semen in Victoria, Australia. Hum Reprod. 1999; 14, 17601764.
5. Adams, D, Fernandez, R, Moore, V, et al. Sperm donation perinatal outcomes in an Australian population cohort. J Obstet Gynaecol Res. 2017; 43, 18301839.
6. Huang, D, Song, S, Liao, A. Short-term safety evaluation of the offspring conceived by 7272 artificial insemination cycles with donor spermatozoon. Andrologia. 2016; 48, 817823.
7. Malchau, SS, Loft, A, Henningsen, AK, et al. Perinatal outcomes in 6,338 singletons born after intrauterine insemination in Denmark, 2007 to 2012: the influence of ovarian stimulation. Fertil Steril. 2014; 102, 11101116.
8. Poon, WB, Lian, WB. Perinatal outcomes of intrauterine insemination/clomiphene pregnancies represent an intermediate risk group compared with in vitro fertilisation/intracytoplasmic sperm injection and naturally conceived pregnancies. J Paediatr Child Health. 2013; 49, 733740.
9. González-Comadran, M, Urresta Avila, J, Saavedra Tascón, A, et al. The impact of donor insemination on the risk of preeclampsia: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014; 182, 160166.
10. Zribi, N, Feki Chakroun, N, El Euch, H, et al. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril.. 2010; 93, 159166.