Published online by Cambridge University Press: 01 January 2008
Higher-order abstract syntax is a simple technique for implementing languages with functional programming. Object variables and binders are implemented by variables and binders in the host language. By using this technique, one can avoid implementing common and tricky routines dealing with variables, such as capture-avoiding substitution. However, despite the advantages this technique provides, it is not commonly used because it is difficult to write sound elimination forms (such as folds or catamorphisms) for higher-order abstract syntax. To fold over such a data type, one must either simultaneously define an inverse operation (which may not exist) or show that all functions embedded in the data type are parametric. In this paper, we show how first-class polymorphism can be used to guarantee the parametricity of functions embedded in higher-order abstract syntax. With this restriction, we implement a library of iteration operators over data structures containing functionals. From this implementation, we derive “fusion laws” that functional programmers may use to reason about the iteration operator. Finally, we show how this use of parametric polymorphism corresponds to the Schürmann, Despeyroux and Pfenning method of enforcing parametricity through modal types. We do so by using this library to give a sound and complete encoding of their calculus into System . This encoding can serve as a starting point for reasoning about higher-order structures in polymorphic languages.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.
Discussions
No Discussions have been published for this article.