Skip to main content
×
×
Home

A coherence theorem for Martin-Löf's type theory

  • MICHAEL HEDBERG (a1)
    • Published online: 01 July 1998
Abstract

In type theory a proposition is represented by a type, the type of its proofs. As a consequence, the equality relation on a certain type is represented by a binary family of types. Equality on a type may be conventional or inductive. Conventional equality means that one particular equivalence relation is singled out as the equality, while inductive equality – which we also call identity – is inductively defined as the ‘smallest reflexive relation’. It is sometimes convenient to know that the type representing a proposition is collapsed, in the sense that all its inhabitants are identical. Although uniqueness of identity proofs for an arbitrary type is not derivable inside type theory, there is a large class of types for which it may be proved. Our main result is a proof that any type with decidable identity has unique identity proofs. This result is convenient for proving that the class of types with decidable identities is closed under indexed sum. Our proof of the main result is completely formalized within a kernel fragment of Martin-Löf's type theory and mechanized using ALF. Proofs of auxiliary lemmas are explained in terms of the category theoretical properties of identity. These suggest two coherence theorems as the result of rephrasing the main result in a context of conventional equality, where the inductive equality has been replaced by, in the former, an initial category structure and, in the latter, a smallest reflexive relation.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Functional Programming
  • ISSN: 0956-7968
  • EISSN: 1469-7653
  • URL: /core/journals/journal-of-functional-programming
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A coherence theorem for Martin-Löf's type theory

  • MICHAEL HEDBERG (a1)
    • Published online: 01 July 1998
Submit a response

Discussions

No Discussions have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *