Abbott, M. (2003) *Categories of Containers*. Ph.D. thesis, University of Leicester.

Abbott, M., Altenkirch, T., McBride, C. & Ghani, N. (2005) ∂ for data: Differentiating data structures. Fundam. Inform.
65
(1–2), 1–28.

Adelson-Velskii, G. & Landis, E. (1962) An algorithm for the organization of information. Dokl. Akad. Nauk USSR
146
(2), 263–266.

Atkey, R., Johann, P. & Ghani, N. (2012) Refining inductive types. Log. Methods Comput. Sci.
8
(2), 1–30.

Brady, E. (2013) Idris, a general-purpose dependently typed programming language: Design and implementation. J. Funct. Program.
23
(5), 552–593.

Cheney, J. & Hinze, R. (2003) *First-Class Phantom Types*. Technical Report, Cornell University.

Chlipala, A. (2013) Certified Programming with Dependent Types. MIT Press.

Constable, R. L. (1986) Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall.

Coq development team. (2015) *The Coq proof assistant reference manual*.

Dagand, P.-E. & McBride, C. (2012) Transporting functions across ornaments. In Proceedings of International Conference on Functional Programming, Copenhagen, Denmark: ACM, pp. 103–114.

Dagand, P.-E. & McBride, C. (2013) A categorical treatment of ornaments. *Logics Comput. Sci.* 530–539.

Dybjer, P. (1994) Inductive families. Form. Asp. Comput.
6
(4), 440–465.

Dybjer, P. (1997) Representing inductively defined sets by wellorderings in Martin-Löf's type theory. Theor. Comput. Sci.
176
(1–2), 329–335.

Freeman, T. & Pfenning, F. (1991) Refinement types for ML. In Programming Language Design and Implementation, Toronto, Ontario, Canada: ACM, pp. 268–277.

Fumex, C. (2012) *Induction and Coinduction Schemes in Category Theory*. PhD Thesis, University of Strathclyde.

Gambino, N. & Hyland, M. (2004) Wellfounded trees and dependent polynomial functors. In Types for Proofs and Programs, vol. 3085, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 210–225.

Gambino, N. & Kock, J. (2013) Polynomial functors and polynomial monads. Math. Proc. Camb. Phil. Soc.
154
(1), 153–192.

Goguen, H. & Luo, Z. (1993) Inductive data types: Well-ordering types revisited. In Workshop on Logical Environments, Cambridge University Press, pp. 198–218.

Goguen, J. A., Thatcher, J. W., Wagner, E. G. & Wright, J. B. (1975 May) Abstract data-types as initial algebras and correctness of data representations. In Proceedings of the Conference on Computer Graphics, Pattern Recognition and Data Structure.

Guibas, L. J. & Sedgewick, R. (1978) A dichromatic framework for balanced trees. In *Foundations of Computer Science*, pp. 8–21.

Hamana, M. & Fiore, M. (2011) A foundation for GADTs and inductive families: Dependent polynomial functor approach. In Workshop on Generic Programming, pp. 59–70.

Hinze, R. (1998) *Numerical Representations as Higher-Order Nested Datatypes*. Technical Report, Institut für Informatik III, Universität Bonn.

Huet, G. (1997) The zipper. J. Funct. Program.
7
(05), 549–554.

Knuth, D. E. (1981) The Art of Computer Programming, Volume II: Seminumerical Algorithms. Addison-Wesley.

Ko, H.-S. (2014) *Analysis and Synthesis of Inductive Families*. PhD Thesis, University of Oxford.

Ko, H.-S. & Gibbons, J. (2011) Modularising inductive families. In *Workshop on Generic Programming*, pp. 13–24.

Ko, H.-S. & Gibbons, J. (2013) Relational algebraic ornaments. In *Workshop on Dependently-Typed Programming*, pp. 37–48.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Bibliopolis Napoli.

McBride, C. (2011) *Ornamental Algebras, Algebraic Ornaments*. Unpublished.

Morris, P. (2007) *Constructing Universes for Generic Programming*. PhD Thesis, University of Nottingham.

Morris, P. & Altenkirch, T. (2009) Indexed containers. *Logics Comput. Sci.* pp. 277–285.

Morris, P., Altenkirch, T. & Ghani, N. (2009) A universe of strictly positive families. Int. J. Found. Comput. Sci.
20
(1), 83–107.

Norell, U. (2007) *Towards a Practical Programming Language Based on Dependent Type Theory*. PhD Thesis, Chalmers University of Technology.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.

Petersson, K. & Synek, D. (1989) A set constructor for inductive sets in Martin-Löf's type theory. In *Category Theory and Computer Science*, pp. 128–140.

Pottier, F. & Régis-Gianas, Y. (2006) Stratified type inference for generalized algebraic data types. In Principles of Programming Languages, Charleston, South Carolina, USA: ACM, pp. 232–244.

Schrijvers, T., Peyton Jones, S., Sulzmann, M. & Vytiniotis, D. (2009) Complete and decidable type inference for GADTs. In Proceedings of International Conference on Functional Programming, Edinburgh, Scotland: ACM, pp. 341–352.

Seely, R. A. G. (1983) Locally cartesian closed categories and type theory. Math. Proc. Camb. Phil. Soc.
95
(1), 33–48.

Sheard, T. & Linger, N. (2007) Programming in Omega. In Central European Functional Programming School. vol. 5161, Lecture Notes in Computer Science, Springer, pp. 158–227.

Smyth, M. B. & Plotkin, G. D. (1982) The category-theoretic solution of recursive domain equations. In Foundations of Computer Science
11
(4), pp. 761–783.

Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K. & Yang, J. (2011) Secure distributed programming with value-dependent types. In Proceedings of International Conference on Functional Programming, ACM, pp. 266–278.

Williams, T., Dagand, P.-É. & Rémy, D. (2014) Ornaments in practice. In Workshop on Generic Programming, Gothenburg, Sweden: ACM, pp. 15–24.