Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T01:06:33.209Z Has data issue: false hasContentIssue false

Fault-tolerant functional reactive programming (extended version)

Part of: ICFP2018

Published online by Cambridge University Press:  07 May 2020

IVAN PEREZ
Affiliation:
National Institute of Aerospace, Hampton, VA, 23666, USA, (e-mail: ivan.perez@nianet.org)
ALWYN E. GOODLOE
Affiliation:
NASA Langley Research Center, Hampton, VA, 23681, USA, (e-mail: a.goodloe@nasa.gov)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Highly critical application domains, like medicine and aerospace, require the use of strict design, implementation, and validation techniques. Functional languages have been used in these domains to develop synchronous dataflow programming languages for reactive systems. Causal stream functions and functional reactive programming (FRP) capture the essence of those languages in a way that is both elegant and robust. To guarantee that critical systems can operate under high stress over long periods of time, these applications require clear specifications of possible faults and hazards, and how they are being handled. Modeling failure is straightforward in functional languages, and many functional reactive abstractions incorporate support for failure or termination. However, handling unknown types of faults, and incorporating fault tolerance into FRP, requires a different construction and remains an open problem. This work demonstrates how to extend an existing functional reactive framework with fault tolerance features. At value level, we tag faulty signals with reliability and probability information and use random testing to inject faults and validate system properties encoded in temporal logic. At type level, we tag components with the kinds of faults they may exhibit and use type-level programming to obtain compile-time guarantees of key aspects of fault tolerance. Our approach is powerful enough to be used in systems with realistic complexity, and flexible enough to be used to guide system analysis and design, validate system properties in the presence of faults, perform runtime monitoring, and study the effects of different fault tolerance mechanisms.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press.
Copyright
© NASA 2020. Published by Cambridge University Press

References

Avižienis, A. (1967) Design of fault-tolerant computers. In Proceedings of the November 14-16, 1967, Fall Joint Computer Conference, AFIPS ’67 (Fall). New York, NY, USA: ACM, pp. 733743.CrossRefGoogle Scholar
Avižienis, A. (1976) Fault-tolerant systems. IEEE Trans. Computers 25(12), 13041312.CrossRefGoogle Scholar
Bärenz, M. & Perez, I. (2018) Rhine: FRP with type-level clocks. In Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell, Haskell 2018. New York, NY, USA: ACM, pp. 145157.CrossRefGoogle Scholar
Bärenz, M., Perez, I. & Nilsson, H. (2016) Mathematical properties of monadic stream functions. Available at: http://cs.nott.ac.uk/~ixp/papers/msfmathprops.pdfGoogle Scholar
Bedingfield, K., Leach, R. D. & Alexander, M. B. (1996, August) Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment. Technical report, National Aeronautics and Space Administration. NASA Reference Publication 1390.Google Scholar
Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E. & De Simone, R. (2000) Esterel: A formal method applied to avionic software development. Sci. Comput. Program. 36(1), 525.CrossRefGoogle Scholar
Boussinot, F. & De Simone, R. (1991) The ESTEREL language. Proc. IEEE 79(9), 12931304.CrossRefGoogle Scholar
Bracker, J. & Nilsson, H. (2015) Polymonad programming in Haskell. Proceedings of the 27th Symposium on the Implementation and Application of Functional Programming Languages, IFL ’15. New York, NY, USA: ACM, pp. 3:1–3:12.CrossRefGoogle Scholar
Bracker, J. & Nilsson, H. (2016) Supermonads: One notion to bind them all. Proceedings of the 9th International Symposium on Haskell, Haskell 2016. New York, NY, USA: ACM, pp. 158169.CrossRefGoogle Scholar
Brady, E. (2013) Programming and reasoning with algebraic effects and dependent types. ACM SIGPLAN Not. 48, 133144.CrossRefGoogle Scholar
Butler, R. W. (2008, February). A Primer on Architectural Level Fault Tolerance. Technical report. NASA/TM-2008-215108, L-19403. NASA Langley Research Center.Google Scholar
Butler, R. W. & Finelli, G. B. (1993) The infeasibility of quantifying the reliability of life-critical real-time software. IEEE Trans. Softw. Eng. 19(1), 312.CrossRefGoogle Scholar
Butler, R. W. (1996) An Introduction to Requirements Capture Using PVS: Specification of a Simple Autopilot. Technical report.Google Scholar
Courtney, A., Nilsson, H. & Peterson, J. (2003) The Yampa arcade. Haskell Workshop, pp. 718.CrossRefGoogle Scholar
Crow, J. & Di Vito, B. (1998) Formalizing Space Shuttle software requirements: Four case studies. ACM Trans. Softw. Eng. Methodol. (TOSEM) 7(3), 296332.CrossRefGoogle Scholar
Di Vito, B. L. (1996) Formalizing new navigation requirements for NASA’s space shuttle. In International Symposium of Formal Methods Europe. Springer, pp. 160178.CrossRefGoogle Scholar
Di Vito, B. L. (1999) A model of cooperative noninterference for integrated modular avionics. Depend. Comput. Crit. Appl. 7, 269286.CrossRefGoogle Scholar
Di Vito, B. L. & Roberts, L. W. (1996) Using Formal Methods to Assist in the Requirements Analysis of the Space Shuttle GPS Change Request. Technical report.Google Scholar
Dormoy, F.-X. (2008) Scade 6: A model based solution for safety critical software development. Proceedings of the 4th European Congress on Embedded Real Time Software (ERTS 2008), pp. 19.Google Scholar
Dutertre, B. & Stavridou, V. (1997) Formal requirements analysis of an avionics control system. IEEE Trans. Softw. Eng. 23(5), 267278.CrossRefGoogle Scholar
Elliott, C. & Hudak, P. (1997) Functional reactive animation. ACM SIGPLAN Not. 32(8), pp. 263273.CrossRefGoogle Scholar
Epstein, J., Black, A. P. & Peyton-Jones, S. (2011) Towards Haskell in the cloud. ACM SIGPLAN Not. 46, pp. 118129. ACM.CrossRefGoogle Scholar
Erwig, M. & Kollmansberger, S. (2006) Functional pearls: Probabilistic functional programming in Haskell. J. Func. Program. 16(1), 2134.CrossRefGoogle Scholar
Halbwachs, N., Caspi, P., Raymond, P. & Pilaud, D. (1991) The synchronous data flow programming language LUSTRE. Proc. IEEE 79(9), 13051320.CrossRefGoogle Scholar
Huch, F. & Norbisrath, U. (2000). Distributed programming in Haskell with ports. In Symposium on Implementation and Application of Functional Languages. Springer, pp. 107121.Google Scholar
Hughes, J. (2000) Generalising monads to arrows. Sci. Comput. Program. 37(1), 67111.CrossRefGoogle Scholar
Katsumata, S.-y. (2014) Parametric effect monads and semantics of effect systems. ACM SIGPLAN Not. 49(1), 633645.CrossRefGoogle Scholar
Kiselyov, O., Sabry, A. & Swords, C. (2013) Extensible effects: An alternative to monad transformers. ACM SIGPLAN Not. 48, 5970.CrossRefGoogle Scholar
Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al. (2009) seL4: Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM, pp. 207220.CrossRefGoogle Scholar
Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R. & Heiser, G. (2014) Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst. (TOCS), 32(1), 2.CrossRefGoogle Scholar
Kshemkalyani, A. D. & Singhal, M. (2008) Distributed Computing. Cambridge University.CrossRefGoogle Scholar
Lamport, L., Shostak, R. & Pease, M. (1982) The Byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382401.CrossRefGoogle Scholar
Liang, S., Hudak, P. & Jones, M. (1995) Monad transformers and modular interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, pp. 333343.CrossRefGoogle Scholar
Lincoln, P. & Rushby, J. (1993) A formally verified algorithm for interactive consistency under a hybrid fault model. The Twenty-Third International Symposium on Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers. IEEE, pp. 402411.CrossRefGoogle Scholar
Lincoln, P. & Rushby, J. (1994) Formal verification of an interactive consistency algorithm for the Draper FTP architecture under a hybrid fault model. In In Proceedings of the Ninth Annual Conference on Computer Assurance, 1994. COMPASS 1994 Safety, Reliability, Fault Tolerance, Concurrency and Real Time, Security. IEEE, pp. 107120.CrossRefGoogle Scholar
Maier, P., Stewart, R. & Trinder, P. (2014) The HdpH DSLs for scalable reliable computation. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell 2014. New York, NY, USA: ACM, pp. 6576.CrossRefGoogle Scholar
Nilsson, H., Courtney, A. & Peterson, J. (2002) Functional reactive programming, continued. In Haskell Workshop, pp. 5164.CrossRefGoogle Scholar
Orchard, D. & Petricek, T. (2014) Embedding effect systems in Haskell. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell 2014. New York, NY, USA: ACM, pp. 1324.CrossRefGoogle Scholar
Orchard, D. & Petricek, T. (2015) Embedding effect systems in Haskell. ACM SIGPLAN Not. 49(12), 1324.CrossRefGoogle Scholar
Orchard, D. A., Petricek, T. & Mycroft, A. (2014) The semantic marriage of monads and effects. CoRR, abs/1401.5391.Google Scholar
Owre, S., Rushby, J. M. & Shankar, N. (1992) PVS: A prototype verification system. In 11th International Conference on Automated Deduction (CADE), Kapur, D. (ed.) Lecture Notes in Artificial Intelligence, vol. 607. Saratoga, NY: Springer-Verlag, pp. 748752.CrossRefGoogle Scholar
Owre, S., Rajan, S., Rushby, J. M., Shankar, N. and Srivas, M. (1996) PVS: Combining specification, proof checking, and model checking. In International Conference on Computer Aided Verification. Springer, pp. 411414.CrossRefGoogle Scholar
Owre, S., Shankar, N., Rushby, J. M. & Stringer-Calvert, D. W. J. (1999) PVS Language Reference. Technical report.Google Scholar
Pagano, B., Andrieu, O., Moniot, T., Canou, B., Chailloux, E., Wang, P., Manoury, P. & Colaço, J.-L. (2009) Experience report: Using objective caml to develop safety-critical embedded tools in a certification framework. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming, ICFP 2009. New York, NY, USA: ACM, pp. 215220.CrossRefGoogle Scholar
Perez, I. (2017) Back to the future: Time travel in FRP. Proceedings of the 10th ACM SIGPLAN International Haskell Symposium, Haskell 2017. New York, NY, USA: ACM.CrossRefGoogle Scholar
Perez, I. (2018) Fault-tolerant functional reactive programming (functional pearl). Proc. ACM Program. Lang., 2(ICFP), 96:1–96:30.CrossRefGoogle Scholar
Perez, I. & Nilsson, H. (2017) Testing and debugging functional reactive programming. Proc. ACM Program. Lang. 1(ICFP), 2:1–2:27.CrossRefGoogle Scholar
Perez, I. & Nilsson, H. Runtime verification and validation of functional reactive systems. J. Func. Program. Submitted (Under evaluation).Google Scholar
Perez, I., Bärenz, M. & Nilsson, H. (2016) Functional reactive programming, refactored. In Proceedings of the 9th International Symposium on Haskell, Haskell 2016. New York, NY, USA: ACM, pp. 3344.CrossRefGoogle Scholar
Perez, I., Goodloe, A. & Edmonson, W. (2019) Fault-tolerant swarms. In 7th IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT 2019). IEEE.CrossRefGoogle Scholar
Pfeifer, H., Schwier, D. & Von Henke, F. W. (1999) Formal verification for time-triggered clock synchronization. Depend. Comput. Crit. Appl. 7, 207226.Google Scholar
Pike, L., Goodloe, A., Morisset, R. & Niller, S. (2010). Copilot: A hard real-time runtime monitor. In International Conference on Runtime Verification. Springer, pp. 345359.CrossRefGoogle Scholar
Pike, L., Niller, S. & Wegmann, N. (2012) Runtime verification for ultra-critical systems. In Runtime Verification, Khurshid, S. & Sen, K. (eds), Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 310324.CrossRefGoogle Scholar
RTCA. (2011) Software Considerations in Airborne Systems and Equipment Certification (178C). Technical report.Google Scholar
Spivey, M. (1990) A functional theory of exceptions. Sci. Comput. Program. 14(1), 2542.CrossRefGoogle Scholar
Stewart, R. (2013) Reliable Massively Parallel Symbolic Computing: Fault Tolerance for a Distributed Haskell. Ph.D. thesis, Heriot-Watt University.Google Scholar
Stewart, R., Trinder, P. & Maier, P. (2013) Supervised workpools for reliable massively parallel computing. In Trends in Functional Programming, Loidl, H.-W. & Peña, R. (eds), Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 247262.CrossRefGoogle Scholar
Stewart, R., Maier, P. & Trinder, P. (2016) Transparent fault tolerance for scalable functional computation. J. Func. Program. 26.Google Scholar
Trinder, P., Pointon, R. & Loidl, H.-W. (2000) Towards runtime system level fault tolerance for a distributed functional language. Trends Func. Program. 2, 103.Google Scholar
Vinoski, S. (2007) Reliability with Erlang. IEEE Internet Comput 11(6).Google Scholar
Wadler, P. (1985) How to replace failure by a list of successes. In Conference on Functional Programming Languages and Computer Architecture. Springer, pp. 113128.CrossRefGoogle Scholar
Xu, L., Bai, Y., Cheng, K., Ge, L., Nie, D., Zhang, L. & Liu, W. (2016) Towards fault-tolerant real-time scheduling in the seL4 microkernel. In 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, pp. 711718.CrossRefGoogle Scholar
Submit a response

Discussions

No Discussions have been published for this article.