Skip to main content
×
×
Home

Phantom types and subtyping

  • MATTHEW FLUET (a1) and RICCARDO PUCELLA (a2)
Abstract

We investigate a technique from the literature, called the phantom-types technique, that uses parametric polymorphism, type constraints, and unification of polymorphic types to model a subtyping hierarchy. Hindley-Milner type systems, such as the one found in Standard ML, can be used to enforce the subtyping relation, at least for first-order values. We show that this technique can be used to encode any finite subtyping hierarchy (including hierarchies arising from multiple interface inheritance). We formally demonstrate the suitability of the phantom-types technique for capturing first-order subtyping by exhibiting a type-preserving translation from a simple calculus with bounded polymorphism to a calculus embodying the type system of SML.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Functional Programming
  • ISSN: 0956-7968
  • EISSN: 1469-7653
  • URL: /core/journals/journal-of-functional-programming
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Phantom types and subtyping

  • MATTHEW FLUET (a1) and RICCARDO PUCELLA (a2)
Submit a response

Discussions

No Discussions have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *