Abel, A. (2011) Irrelevance in type theory with a heterogeneous equality judgement. In Foundations of Software Science and Computational Structures, Hofmann, M. (ed). Berlin Heidelberg: Springer, pp. 57–71. ISBN 978-3-642-19805-2.

Abel, A. (2012) MiniAgda: Integrating sized and dependent types. In PAR-10. Partiality and Recursion in Interactive Theorem Provers, volume 5 of *EPiC Series in Computing*, Ekaterina, K., Ana, B. & Milad, N. (eds). EasyChair, pp. 18–33. Available at: https://easychair.org/publications/paper/RM. Abel, A. (2015a) Injectivity of type constructors is partially back. Agda refutes excluded middle. Accessed April 17, 2017. Available at: https://github.com/agda/agda/issues/1406 (on the Agda bug tracker). Abel, A. (2015c) Circumvention of forcing analysis brings back easy proof of Fin injectivity. Accessed April 17, 2017. Available at: https://github.com/agda/agda/issues/1427 (on the Agda bug tracker). Abel, A. & Pientka, B. (2011) Higher-order dynamic pattern unification for dependent types and records. In International Conference on Typed Lambda Calculi and Applications, TLCA. Springer, pp. 10–26.

Asperti, A., Ricciotti, W., Sacerdoti Coen, C., & Tassi, E. (2009) Hints in unification. In Theorem Proving in Higher Order Logics, Berghofer, S., Nipkow, T., Urban, C. & Wenzel, M. (eds). Berlin, Heidelberg: Springer, pp. 84–98. ISBN 978-3-642-03359-9.

Baader, F. & Snyder, W. (2001) Unification theory. In Handbook of Automated Reasoning (in 2 volumes), Robinson, J. A. & Voronkov, A. (eds). Elsevier and MIT Press, pp. 445–532. ISBN 0-444-50813-9.

Bezem, M., Coquand, T., & Huber, S. (2014) A Model of Type Theory in Cubical Sets. In 19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in Informatics (LIPIcs), Matthes, R. & Schubert, A. (eds). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 107–128. ISBN 978-3-939897-72-9. Accessed April 17, 2017. Available at: http://drops.dagstuhl.de/opus/volltexte/2014/4628. Brady, E. (2013) Idris, a general-purpose dependently typed programming language: Design and implementation. J. Funct. Program. 23 (5): 552–593.

Brady, E., McBride, C., & McKinna, J. (2004) Inductive families need not store their indices. In Types for Proofs and Programs, Berardi, S., Coppo, M., & Damiani, F. (eds). Berlin, Heidelberg: Springer, pp. 115–29. ISBN 978-3-540-24849-1.

Cockx, J. (2017) *Dependent Pattern Matching and Proof-Relevant Unification*. PhD Thesis, KU Leuven.

Cockx, J. & Devriese, D. (2017) Lifting proof-relevant unification to higher dimensions. In Proceedings of the 6th Conference on Certified Programs and Proofs, CPP. ACM.

Cockx, J., Devriese, D. & Piessens, F. (2014) Pattern matching without K. In Proceedings of the 19th International Conference on Functional Programming, ICFP. ACM.

Cockx, J., Devriese, D. & Piessens, F. (2016a) Unifiers as equivalences: Proof-relevant unification of dependently typed data. In Proceedings of the 21th International Conference on Functional Programming, ICFP. ACM.

Cockx, J., Devriese, D., & Piessens, F. (2016b) Eliminating dependent pattern matching without K. J. Funct. Program. 26, e16.

Cohen, C., Coquand, T., Huber, S. & Mörtberg, A. (2016) Cubical type theory: A constructive interpretation of the univalence axiom. In *CoRR*. Accessed April 17, 2017. Available at: http://arxiv.org/abs/1611.02108 Coquand, T. (1992) Pattern matching with dependent types. In Proceedings of the 1992 Workshop on Types for Proofs and Programs, TYPES, Nordstrom, B., Petersson, K., & Plotkin, G. (eds). Chalmers University of Technology, pp. 66–79.

Cornes, C. & Terrasse, D. (1996) Automating inversion of inductive predicates in Coq. In Types for Proofs and Programs, Berardi, S. & Coppo, M. (eds). Berlin, Heidelberg: Springer, pp. 85–104. ISBN 978-3-540-70722-6.

Danielsson, N. A. (2014) Regression in unifier, possibly related to modules and/or heterogeneous constraints. Accessed April 17, 2017. Available at: https://github.com/agda/agda/issues/1071 (on the Agda bug tracker). de Moura, L., Kong, S., Avigad, J., van Doorn, F. & von Raumer, J. (2015) The Lean theorem prover (system description). In Proceedings of the 25th International Conference on Automated Deduction, CADE.

Dijkstra, G. (2015) Disunifying non-fully applied constructors is inconsistent with function extensionality. Accessed April 17, 2017. Available at: https://github.com/agda/agda/issues/1497 (on the Agda bug tracker). Dybjer, P. (1991) Inductive sets and families in Martin-Löf's type theory and their set-theoretic semantics. In Proceedings of the 1st Workshop on Logical Frameworks.

Goguen, H., McBride, C., & McKinna, J. (2006) Eliminating dependent pattern matching. In Algebra, Meaning, and Computation: Essays dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, Futatsugi, K., Jouannaud, J.-P., & Meseguer, J. (eds). Berlin, Heidelberg: Springer, pp. 521–540. ISBN 978-3-540-35464-2.

Goguen, Joseph A. (1989) What is unification?: A categorical view of substitution, equation and solution. In Algebraic Techniques, Aït-Kaci, H. & Nivat, M. (eds). Academic Press, pp. 217–261. ISBN 978-0-12-046370-1.

Jouannaud, J.-P. & Kirchner, C. (1991) Solving equations in abstract algebras: A rule-based survey of unification. In Computational Logic - Essays in Honor of Alan Robinson, Lassez, J.-L. & Plotkin, G. D. (eds). The MIT Press, pp. 257–321.

Licata, D. R. & Shulman, M. (2013) Calculating the fundamental group of the circle in homotopy type theory. In 28th Symposium on Logic in Computer Science, LICS.

Luo, Z. (1994) Computation and Reasoning: A Type Theory for Computer Science, volume 11 of *International Series of Monographs on Computer Science*. New York, NY, USA: Oxford University Press, Inc. ISBN 0-19-853835-9.

Martin-Löf, P. (1972) An intuitionistic theory of types. In Proceedings of the 25th Years of Constructive Type Theory (Venice, 1995). Oxford University Press, pp. 127–172.

Martin-Löf, P. (1984) Intuitionistic Type Theory, volume 1 of *Studies in Proof Theory*. Bibliopolis. ISBN 88-7088-105-9.

McBride, C. (1998a) Towards dependent pattern matching in LEGO. Unpublished.

McBride, C. (1998b) Inverting inductively defined relations in LEGO. In Types for Proofs and Programs, Giménez, E. & Paulin-Mohring, C. (eds). Berlin, Heidelberg: Springer, pp. 236–253. ISBN 978-3-540-49562-8.

McBride, C. (2000) *Dependently Typed Functional Programs and their Proofs*. PhD Thesis, University of Edinburgh.

McBride, C. (2002) Elimination with a motive. In Types for Proofs and Programs, Callaghan, P., Luo, Z., McKinna, J., & Pollack, R. (eds). Berlin, Heidelberg: Springer, pp. 197–216. ISBN 978-3-540-45842-5.

McBride, C., Goguen, H., & McKinna, J. (2006) A few constructions on constructors. In Types for Proofs and Programs, Filliâtre, J.-C., Paulin-Mohring, C., and Werner, B. (eds). Berlin, Heidelberg: Springer, pp. 186–200. ISBN 978-3-540-31429-5.

McKinna, J. & Forsberg, F. N. (2015) The Encode-Decode Method, Relationally, Institute of Cybernetics at Tallinn University of Technology, pp. 63–64. ISBN 978-9949-430-86-4.

Monin, J.-F. (2010) Proof Trick: Small Inversions. In Second Coq Workshop, Bertot, Y. (ed). Edinburgh, U.K. Accessed April 17, 2017. Available at: https://hal.inria.fr/inria-00489412. Norell, U. (2007) *Towards a Practical Programming Language Based on Dependent Type Theory*. PhD Thesis, Chalmers University of Technology.

Peebles, D. (2012) Case splitting emits hidden record patterns that should remain implicit. Accessed April 17, 2017. Available at: https://github.com/agda/agda/issues/635 (on the Agda bug tracker). Reed, J. (2009) Higher-order constraint simplification in dependent type theory. In Proceedings of the 4th International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. ACM, pp. 49–56.

Sozeau, M. (2010) Equations: A dependent pattern-matching compiler. In Interactive Theorem Proving, Kaufmann, M. & Paulson, L. C. (eds). Berlin, Heidelberg: Springer, pp. 419–434. ISBN 978-3-642-14052-5.

Streicher, T. (1993) Investigations into intensional type theory. Habilitation thesis, Ludwig Maximilian University of Munich.

The Univalent Foundations Program. (2013) Homotopy Type Theory: Univalent Foundations of Mathematics. Accessed April 17, 2017. Available at: http://homotopytypetheory.org/book, Institute for Advanced Study. Ziliani, B. & Sozeau, M. (2015) A unification algorithm for Coq featuring universe polymorphism and overloading. In International Conference on Functional Programming, ICFP.

## Proof-relevant unification: Dependent pattern matching with only the axioms of your type theory

^{(a1)}and DOMINIQUE DEVRIESE^{(a2)}## Discussions

No Discussions have been published for this article.