Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-sbrr8 Total loading time: 0.183 Render date: 2022-01-16T23:23:04.182Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Shared memory multiprocessor support for functional array processing in SAC

Published online by Cambridge University Press:  01 June 2005

CLEMENS GRELCK
Affiliation:
Institut für Softwaretechnik und Programmiersprachen, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany (e-mail: grelck@isp.uni-luebeck.de)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Classical application domains of parallel computing are dominated by processing large arrays of numerical data. Whereas most functional languages focus on lists and trees rather than on arrays, SAC is tailor-made in design and in implementation for efficient high-level array processing. Advanced compiler optimizations yield performance levels that are often competitive with low-level imperative implementations. Based on SAC, we develop compilation techniques and runtime system support for the compiler-directed parallel execution of high-level functional array processing code on shared memory architectures. Competitive sequential performance gives us the opportunity to exploit the conceptual advantages of the functional paradigm for achieving real performance gains with respect to existing imperative implementations, not only in comparison with uniprocessor runtimes. While the design of SAC facilitates parallelization, the particular challenge of high sequential performance is that realization of satisfying speedups through parallelization becomes substantially more difficult. We present an initial compilation scheme and multi-threaded execution model, which we step-wise refine to reduce organizational overhead and to improve parallel performance. We close with a detailed analysis of the impact of certain design decisions on runtime performance, based on a series of experiments.

Type
Research Article
Copyright
© 2005 Cambridge University Press
Submit a response

Discussions

No Discussions have been published for this article.
You have Access
31
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shared memory multiprocessor support for functional array processing in SAC
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Shared memory multiprocessor support for functional array processing in SAC
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Shared memory multiprocessor support for functional array processing in SAC
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *