Altenkirch, T. & Chapman, J. (2009) Big-step normalisation. J. Funct. Prog. 19 (3–4), 311–333.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics, Revised ed.North-Holland.

Cardelli, L. & Gordon, A. D. (2001) Logical properties of name restriction. In Proceedings of the 5th International Conference on Typed Lambda Calculus and Applications, Abramsky, S. (ed), Lecture Notes in Computer Science, vol. 2044. Berlin: Springer-Verlag, pp. 46–60.

Cheney, J. (2005) Nominal logic and abstract syntax. ACM SIGACT News, Logic Column 36 (4), 47–69.

Cheney, J. (2009) A simple nominal type theory. In Proceedings of the International Workshop on Logical Frameworks and Metalanguages: Theory and Practice, LFMTP 2008, Electronic Notes in Theoretical Computer Science, vol. 228. Elsevier B. V., pp. 37–52.

Coquand, T. (1991) An algorithm for testing conversion in type theory., In Logical Frameworks, Huet, G. & Plotkin, G. D. (eds). New York, NY, USA: Cambridge University Press, pp. 255–228.

Crary, K. & Harper, R. (2006) Higher-order abstract syntax: Setting the record straight. ACM SIGACT News, Logic Column 37 (3), 93–96.

Fernández, M. & Gabbay, M. J. (2005) Nominal rewriting with name generation: Abstraction vs. locality. In Proceedings of the 7th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming PPDP 2005. ACM Press, pp. 47–58.

Fiore, M. P., Plotkin, G. D. & Turi, D. (1999) Abstract syntax and variable binding. In Proceedings of the 14th Annual Symposium on Logic in Computer Science. Washington: IEEE Computer Society Press, pp. 193–202.

Friedman, H. (1975) Equality between functionals. In Logic Colloquium, Parikh, R. (ed), Lecture Notes in Mathematics, vol. 453. Berlin/Heidelberg: Springer, pp. 22–37.

Gabbay, M. J. (2000) *A Theory of Inductive Definitions with α-Equivalence: Semantics, Implementation, Programming Language*, PhD thesis. University of Cambridge.

Gabbay, M. J. & Lengrand, S. (December 2009) The lambda-context calculus (extended version). Inform. comput. 207, 1369–1400.

Gabbay, M. J. & Pitts, A. M. (2002) A new approach to abstract syntax with variable binding. Form. Asp. Comput. 13, 341–363.

Gacek, A., Miller, D. & Nadathur, G. (2008) Combining generic judgments with recursive definitions. In Proceedings of the 23rd IEEE Symposium on Logic in Computer Science, LICS 2008. IEEE Computer Society Press, pp. 33–44.

Gödel, K. (1958) Über eine bisher noch nicht benüzte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287.

Gordon, A. D. & Melham, T. (1996) Five axioms of alpha-conversion. In Proceedings of the 9th International Conference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, vol. 1125. Springer-Verlag, pp. 173–191.

Grégoire, B. & Leroy, X. (2002) A compiled implementation of strong reduction. In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming (Pittsburgh, PA, USA). ACM Press, pp. 235–246.

Harper, R. & Pfenning, F. (2005) On equivalence and canonical forms in the LF type theory. ACM Trans. Comput. Log. 6, 61–101.

Johnstone, P. T. (2002) Sketches of an Elephant, a Topos Theory Compendium, Vol. 1–2. Oxford Logic Guides, nos. 43–44. Oxford University Press.

Licata, D. R. & Harper, R. (2009) A universe of binding and computation. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming, ICFP 2009. ACM Press, pp. 123–134.

Licata, D. R., Zeilberger, N. & Harper, R. (2008) Focusing on binding and computation. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008 (Pittsburgh, PA, USA, 24–27 June 2008). IEEE Computer Society, pp. 241–252.

Miller, D. A. (1990) An extension to ML to handle bound variables in data structures. In Proceedings of the Logical Frameworks BRA Workshop, Technical Report MS-CIS-90-59. University of Pennsylvania.

Miller, D. A. & Tiu, A. (2005) A proof theory for generic judgments. ACM Trans. Comput. Log. 6 (4), 749–783.

Milner, R. (1992) Functions as processes. Math. Struct. Comput. Sci. 2 (2), 119–141.

Moggi, E. (1991) Notions of computation and monads. Inf. Comput., 93 (1), 55–92.

Nordström, B., Petersson, K. & Smith, J. M. (1990) Programming in Martin-Löf's Type Theory. Oxford University Press.

Norrish, M. (2004) Recursive function definition for types with binders. In Proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, vol. 3223. Springer-Verlag, pp. 241–256.

Odersky, M. (1994) A functional theory of local names. In Proceedings of the Conference Record of the 21st Annual ACM Symposium on Principles of Programming Languages. ACM Press, pp. 48–59.

Pfenning, F. (2001) Logical frameworks. In Handbook of Automated Reasoning, Robinson, A. & Voronkov, A. (eds). Elsevier Science and MIT Press, Chapter 17, pp. 1063–1147.

Pfenning, F. & Elliott, C. (1988) Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM Press, pp. 199–208.

Pientka, B. (2008) A type-theoretic foundation for programming with higher-order abstract syntax and first-class substitutions. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008. ACM Press, pp. 371–382.

Pitts, A. M. (2003) Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 165–193.

Pitts, A. M. (2006) Alpha-structural recursion and induction. J. ACM 53, 459–506.

Pitts, A. M. (2010) Nominal System T. In Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 2010 (Madrid, Spain). ACM Press, pp. 159–170.

Pitts, A. M. & Gabbay, M. J. (2000) A metalanguage for programming with bound names modulo renaming. In Proceedings of the 5th International Conference on Mathematics of Program Construction, MPC 2000, (Ponte De Lima, Portugal, July 2000), Backhouse, R. & Oliveira, J. N. (eds), Lecture Notes in Computer Science, vol. 1837. Heidelberg: Springer-Verlag, pp. 230–255.

Pitts, A. M. & Stark, I. D. B. (1993) Observable properties of higher order functions that dynamically create local names, or: What's new? In Proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science (Gdańsk, 1993), Lecture Notes in Computer Science, vol. 711. Springer-Verlag, Berlin, pp. 122–141.

Pitts, A. M. & Stark, I. D. B. (1998) Operational reasoning for functions with local state. In Higher Order Operational Techniques in Semantics, Gordon, A. D. & Pitts, A. M. (eds), Publications of the Newton Institute. Cambridge University Press, pp. 227–273.

Poswolsky, A. & Schürmann, C. (2008) Practical programming with higher-order encodings and dependent types. In Proceedings of the European Symposium on Programming, ESOP 2008, Lecture Notes in Computer Science, vol. 4960. Springer-Verlag, pp. 93–107.

Pottier, F. (2007) Static name control for FreshML. In Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007. Wroclaw, Poland: IEEE Computer Society Press, pp. 356–365.

Pouillard, N. & Pottier, F. (2010) A fresh look at programming with names and binders. In Proceedings of the Fifteenth ACM SIGPLAN International Conference on Functional Programming, ICFP 2010. ACM Press, pp. 217–228.

Schöpp, U. & Stark, I. D. B. (2004) A dependent type theory with names and binding. In Proceedings of the Computer Science Logic, CSL 2004 (Karpacz, Poland), Lecture notes in Computer Science, vol. 3210. Springer-Verlag, pp. 235–249.

Schürmann, C., Despeyroux, J. & Pfenning, F. (2001) Primitive recursion for higher-order abstract syntax. Theor. Comput. Sci. 266, 1–57.

Shinwell, M. R. & Pitts, A. M. (February 2005) *Fresh Objective Caml User Manual*, Techical Report UCAM-CL-TR-621. University of Cambridge Computer Laboratory.

Shinwell, M. R., Pitts, A. M. & Gabbay, M. J. (2003) FreshML: Programming with binders made simple. In Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, ICFP 2003 (Uppsala, Sweden). ACM Press, pp. 263–274.

Tait, W. W. (1967) Intensional interpretation of functionals of finite type, I. J. Symb. Log. 32 (2), 198–212.

Urban, C. (2008) Nominal reasoning techniques in Isabelle/HOL. J. Autom. Reason. 40 (4), 327–356.

Urban, C. & Berghofer, S. (2006) A recursion combinator for nominal datatypes implemented in Isabelle/HOL. In Proceedings of the 3rd International Joint Conference on Automated Reasoning, IJCAR 2006 (Seattle, USA), Lecture Notes in Computer Science, vol. 4130. Springer-Verlag, pp. 498–512.

Urban, C., Cheney, J. & Berghofer, S. (2011) Mechanizing the metatheory of LF. ACM Trans. Comput. Log. 12 (15), 1–42.

Urban, C., Pitts, A. M. & Gabbay, M. J. (2004) Nominal unification. Theor. Comput. Sci. 323, 473–497.

Westbrook, E., Stump, A. & Austin, E. (2009) The calculus of nominal inductive constructions: An intensional approach to encoding name-bindings. In Proceedings of the Fourth International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP 2009 (Montreal, Canada), ACM International Conference Proceeding Series. ACM Press, pp. 74–83.