Skip to main content

A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site


Microorganisms were the earliest inhabitants on our planet that occupy nearly every environment, and play a major role in biogeochemical cycles. Despite their global importance, there remains a paucity of data on microbial responses to long-term environmental and climatic changes. Microorganisms are known to be immured in glacial ice, but no high-resolution temporal records of their density exist, owing in large part to the lack of appropriate clean methodology that allows for rapid analysis of samples over depth. We describe a clean and time efficient method that can produce a high-temporal resolution record of prokaryotic density archived in ice cores. The method combines acquisition of discrete samples using a continuous ice-core melting system coupled with flow cytometry (FCM) of DNA-stained samples. Specifically, we evaluate the performance of the FCM measurement technique in terms of specificity, precision, accuracy and minimum detection limits. Examples from the West Antarctic Ice Sheet Divide ice core are included to show the efficacy of the method.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Corresponding author
Correspondence: Pamela A. Santibáñez <>
Hide All
Abyzov SS, Mitskevich IN and Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow), 67, 6673
Banta JR, McConnell JR, Frey MM, Bales RC and Taylor K (2008) Spatial and temporal variability in snow accumulation at the West Antarctic Ice Sheet Divide over recent centuries. J. Geophys. Res., 113(D23), 18 (doi: 10.1029/2008JD010235)
Barrie L (1985) Atmospheric particles: their physical and chemical characteristics, and deposition processes relevant to the chemical composition of glaciers. Ann. Glaciol., 7, 100108
Bidle KD, Lee S, Marchant DR and Falkowski PG (2007) Fossil genes and microbes in the oldest ice on earth. Proc. Natl. Acad. Sci. U. S. A., 104(33), 1345513460 (doi: 10.1073/pnas.0702196104)
Biscaye PE and 6 others (1997) Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res., 102(97), 26765 (doi: 10.1029/97JC01249)
Blanchon P and Shaw J (1995) Reef drowning during the last deglaciation-evidence for catastrophic sea level rise and ice-sheet collapse. Geology, 23(1), 48 (doi: 10.1130/0091-7613(1995)023<0004:RDDTLD>2.3.CO;2)
Bojsen R, Torbensen R, Larsen CE, Folkesson A and Regenberg B (2013) The synthetic amphipathic peptidomimetic ltx109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner. PLoS ONE, 8(7) (doi: 10.1371/journal.pone.0069483)
Bolker BM (2008) Ecological data and models in R, 1st edn. Princeton University Press, Princeton, New Jersey, USA
Burnett SL and Beuchat LR (2002) Comparison of methods for fluorescent detection of viable, dead, and total Escherichia coli O157:H7 cells in suspensions and on apples using confocal scanning laser microscopy following treatment with sanitizers. Int. J. Food Microbiol., 74, 3745 (doi: 10.1016/S0168-1605(01)00714-0)
Burrows SM, Elbert W, Lawrence MG and Poschl U (2009a) Bacteria in the global atmosphere – part 1: review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys., 9, 92639280 (doi: 10.5194/acp-9-9263-2009)
Burrows SM and 6 others (2009b) Bacteria in the global atmosphere – part 2: modelling of emissions and transport between different ecosystems. Atmos. Chem. Phys. Discuss., 9, 1082910881 (doi: 10.5194/acp-9-9281-2009)
Calcott PH and MacLeod RA (1974) Survival of Escherichia coli from freeze-thaw damage: influence of nutritional status and growth rate. Can. J. Microbiol., 20, 683689 (doi: 10.1139/m74-104)
Calcott PH and MacLeod RA (1975) The survival of Escherichia coli from freeze-thaw damage: the relative importance of wall and membrane damage. Can. J. Microbiol., 21, 19601968 (doi: 10.1139/m75-253)
Calcott PH, Lee SK and MacLeod RA (1976) The effect of cooling and warming rates on the survival of a variety of bacteria. Can. J. Microbiol., 22, 106109 (doi: 106-109, 10.1139/m76-015)
Castro HF, Classen AT, Austin EE, Norby RJ and Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl. Environ. Microbiol., 76(4), 9991007 (doi: 10.1128/AEM.02874-09)
Christner BC and 5 others (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus, 144, 479485 (doi: 10.1006/1999.6288)
Christner BC, Mosley-Thompson E, Thompson LG and Reeve JN (2003) Bacterial recovery from ancient glacial ice. Env. Microb., 5, 433436 (doi: 10.1046/j.1462-2920.2003.00422.x)
Christner BC, Mikucki JA, Foreman CM, Denson J and Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus, 174, 572584 (doi: 10.1016/j.icarus.2004.10.027)
Christner BC and 9 others (2006) Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol. Oceanogr., 51(6), 24852501 (doi: 10.4319/lo.2006.51.6.2485)
Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 53(1), 121147
D'Amico S, Collins T, Marx J-C, Feller G and Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep., 7(4), 385389 (doi: 10.1038/sj.embor.7400662)
Dansgaard W and 10 others (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220 (doi: 10.1038/364218a0)
Davidson CI, Bergin MH and Kuhns HD (1996) The deposition of particles and gases to ice sheets. In Wolff EW and Bales RC eds. Chemical exchange between the atmosphere and polar snow, vol. 43. Springer-Verlag, Berlin, Heidelberg, NATO ASI Series, 275306 (doi: 10.1007/978-3-642-61171-1_12)
de Groot RS, Wilson MA and Boumans RM (2002) Typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ., 41(3), 393408 (doi: 10.1016/S0921-8009(02)00089-7)
Delmonte B, Petit JR and Maggi V (2002) Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Clim. Dyn., 18(8), 647660 (doi: 10.1007/s00382-001-0193-9)
Delmonte B and 5 others (2004) Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition. Clim. Dyn., 23, 427438 (doi: 10.1007/s00382-004-0450-9)
Dieser M, Greenwood M and Foreman CM (2010) Carotenoid pigmentation in antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res., 42(4), 396405 (doi: 10.1657/1938-4246-42.4.396)
Falkowski PG, Fenchel T and Delong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879), 10341039 (doi: 10.1126/science.1153213)
Field CB (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237240 (doi: 10.1126/science.281.5374.237)
Finlay BJ, Maberly SC and Cooper JI (1997) Microbial diversity and ecosystem function. Oikos, 80, 209213 (doi: 10.2307/3546587)
Fischer H, Siggaard-Andersen M, Ruth U, Röthlisberger R and Wolff E (2007) Glacial/Interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys., 45(2005), 126 (doi: 10.1029/2005RG000192.1)
Gasol JM and del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar., 64(2), 197224 (doi: 10.3989/scimar.2000.64n2197)
Gasol JM, Zweifel UL, Peters F, Fuhrman JA and Hagström Å (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol., 65(10), 4475
Gorham E, Brush GS, Graumlich LJ, Rosenzweig ML and Johnson AH (2001) The value of paleoecology as an aid to monitoring ecosystems and landscapes, chiefly with reference to North America. Environ. Rev., 9, 99126 (doi: 10.1139/a01-003)
Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev., 20, 459477 (doi: 10.1128/CMR.00039-06)
Griffin DW and 5 others (2003) Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143157 (doi: 10.1023/B:AERO.0000006530.32845.8d)
Hadfield RH (2009) Single-photon detectors for optical quantum information applications. Nat. Photonics, 3(12), 696705 (doi: 10.1038/nphoton.2009.230)
Hara K and Zhang D (2012) Bacterial abundance and viability in long-range transported dust. Atm. Env., 47, 2025 (doi: 10.1016/j.atmosenv.2011.11.050)
Harris CM and Kell DB (1985) The estimation of microbial biomass. Biosensors J., 1, 1784 (doi: 10.1016/0265-928X(85)85005-7)
Henningson EW, Lundquist M, Larsson E, Sandström G and Forsman M (1997) A comparative study of different methods to determine the total number and the survival ratio of bacteria in aerobiological samples. J. Aerosol Sci., 28(3), 459469 (doi: 10.1016/S0021-8502(96)00447-8)
Hopwood D (1969) Fixatives and fixation: a review. Histochem. J., 1, 323360 (doi: 10.1007/BF01003278)
Jackson JBC and Erwin DH (2006) What can we learn about ecology and evolution from the fossil record? Trends Ecol. Evol., 21(6), 322328 (doi: 10.1016/j.tree.2006.03.017)
Javaux EJ, Marshall CP and Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature, 463(7283), 934938 (doi: 10.1038/nature08793)
Jones LJ and Singer VL (2001) Fluorescence microplate-based assay for tumor necrosis factor activity using SYTOX green stain. Anal. Biochem., 293(1), 815 (doi: 10.1006/abio.2001.5116)
Kasting JF and Siefert JL (2002) Life and the evolution of Earth's atmosphere. Science, 296(5570), 10661068 (doi: 10.1126/science.1071184)
Kellogg CA and Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol. Evol., 21, 638644
Kiernan JA (2000) Formaldehyde, formalin, paraformaledhyde and glutaraldehyde: what they are and what they do. Micros. Today 00-1, 8–12
Kirchman DL (1993) Statistical analysis of direct counts of microbial abundance. In Kemp PF, Sherr BF, Sherr EB and Cole JJ eds. Handbook of methods in aquatic microbial ecology. Lewis Publishers, Florida, USA
Kirchman DL, Sigda J, Kapuscinski R and Mitchell R (1982) Statistical analysis of the direct count method for enumerating bacteria. Appl. Environ. Microbiol., 44(2), 376382
Kjelleberg S, Humphrey BA and Marshall KC (1982) Effect of interfaces on small, starved marine bacteria. Appl. Environ. Microbiol., 43(5), 11661172
Klauth P, Wilhelm R, Klumpp E, Poschen L and Groeneweg J (2004) Enumeration of soil bacteria with the green fluorescent nucleic acid dye SYTOX green in the presence of soil particles. J. Microbiol. Methods, 59(2), 189198 (doi: 10.1016/j.mimet.2004.07.004)
Kopp RE, Kirschvink JL, Hilburn IA and Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. U. S. A., 102(32), 11131–6 (doi: 10.1073/pnas.0504878102)
Kubitschek HE and Friske JA (1986) Determination of bacterial cell volume with the Coulter Counter. J. Bacteriol., 168(3), 14661467
Kump LR (2008) The rise of atmospheric oxygen. Nature, 451(7176), 277278 (doi: 10.1038/nature06587)
Lambert F and 9 others (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature, 452(7187), 616619 (doi: 10.1038/nature06763)
Lebaron P, Catala P, Parthuisot N and Oce O (1998a) Effectiveness of SYTOX green stain for bacterial viability assessment. Appl. Environ. Microbiol., 64(7), 2697
Lebaron P, Parthuisot N, Catala P and Oce O (1998b) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol., 64(5), 1725
Lebaron P and 5 others (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl. Environ. Microbiol., 67(4), 1775 (doi: 10.1128/AEM.67.4.1775)
Lebaron P and 5 others (2002) Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquat. Microb. Ecol., 28, 131140 (doi: 10.3354/ame028131)
Lee JA and 33 others (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A, 73(10), 926930 (doi: 10.1002/cyto.a.20623)
Li WKW, Jellett JF and Dickie PM (1995) DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol. Oceanogr., 40(8), 14851495 (doi: 10.4319/lo.1995.40.8.1485)
Lüthi D and 10 others (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453(7193), 379382 (doi: 10.1038/nature06949)
Mackey BM (1984) Lethal and sublethal effects of refrigeration freezing and freeze-drying on microoganisms. Soc. Appl. Bacteriol. Symp. Ser., 12, 4575
Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol., 22(3), 456464 (doi: 10.1016/j.copbio.2011.01.008)
Marie D, Partensky F, Jacquet S and Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR I. Appl. Environ. Microbiol., 63(1), 186193
Marie D, Partensky F, Vaulot D and Brussaard CP (1999) Enumeration of phytoplankton, bacteria, and viruses in marine samples. Curr. Protoc. Cytom. Supplement 10, 11.11.1–11.11.15 (doi: 10.1002/0471142956.cy1111s10)
Mayewski PA and 13 others (1996) Climate change during the last deglaciation in Antarctica. Science, 272(5268), 16361638 (doi: 10.1126/science.272.5268.1636)
Mazur P (1966) Theoretical and experimental effects of cooling and warming velocity on the survival of frozen and thawed cells. Cryobiology, 2(1), 181192 (doi: 10.1016/S0011-2240(66)80165-7)
Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology, 14, 251272 (doi: 10.1016/0011-2240(77)90175-4)
Mazur P and Schmidt JJ (1968) Interactions of cooling velocity, temperature, and warming velocity on the survival of frozen and thawed yeast. Cryobiology, 5, 117 (doi: 10.1016/S0011-2240(68)80138-5)
McConnell JR, Lamorey GW, Lambert SW and Taylor KC (2002) Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol., 36(775), 711 (doi: 10.1021/es011088z)
McManus JF, Francois R, Gherardi J-M, Keigwin LD and Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), 834837 (doi: 10.1038/nature02494)
Meadows PS (1971) The attachment of bacteria to solid surfaces. Arch. fr Mikrobiol., 75, 374381 (doi: 10.1007/BF00407699)
Meyer O (1993) Functional groups of microorganisms. In Biodiversity and ecosystem function. Ecological Studies 99, Springer, Berlin, 6796
Miteva VI, Sheridan PP and Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl. Environ. Microbiol., 70(1) (doi: 10.1128/AEM.70.1.202-213.2004)
Miteva VI, Teacher C, Sowers T and Brenchley JE (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol., 11(3), 640656 (doi: 10.1111/j.1462-2920.2008.01835.x)
Morono Y, Terada T, Kallmeyer J and Inagaki F (2013) An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ. Microbiol., 15(10), 28412849 (doi: 10.1111/1462-2920.12153)
Mortimer FC, Mason DJ and Gant VA (2000) Flow cytometric monitoring of antibiotic-induced injury in Escherichia coli using cell-impermeant fluorescent probes. Antimicrob. Agents Chemother., 44(3), 676681 (doi: 10.1128/AAC.44.3.676-681.2000)
Müller S and Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev., 34(4), 554587 (doi: 10.1111/j.1574-6976.2010.00214)
Müller S and Tárnok A (2008) Making cytometry publications comprehensive. Cytometry A., 73(10), 875876 (doi: 10.1002/cyto.a.20650)
Nebe-von-Caron G (2009) Standardization in microbial cytometry. Cytometry A., 75(2), 8689 (doi: 10.1002/cyto.a.20696)
Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR and Badley RA (2000) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J. Microbiol. Methods, 42(1), 97114 (doi: 10.1016/S0167-7012(00)00181-0)
Noffke N, Eriksson KA, Hazen RM and Simpson EL (2006) A new window into early Archean life: microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology, 34(4), 253 (doi: 10.1130/G22246.1)
Park J-Y, Kug J-S, Bader J, Rolph R and Kwon M (2015) Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl. Acad. Sci. U.S.A., 112(19), 59215926 (doi: 10.1073/pnas.1416884112)
Parker LV and Martel CJ (2002) Long-term survival of enteric microorganism in frozen wastewater inn technical report TR-02-16 of the U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (ERDC/CRREL). U.S. Army Corps of Engineers, Hanover, NH
Perfumo A and Marchant R (2010) Global transport of thermophilic bacteria in atmospheric dust. Env. Microb. Rep., 2, 333339 (doi: 10.1111/j.1758-2229.2010.00143.x)
Pratt KA and 8 others (2009) In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401 (doi: 10.1038/ngeo521)
Priscu JC and Christner B (2004) Earth's icy biosphere. In Microbial diversity and bioprospecting. American Society for Microbiology, Washington, DC
Priscu JC and 11 others (1999) Geomicrobiology of subglacial ice above lake Vostok, Antarctica. Science, 286(5447), 21412144 (doi: 10.1126/science.286.5447.2141)
Priscu JC, Christner BC, Foreman CM and Royston-Bishop G (2007) Biological material in ice cores. In Encyclopedia of quaternary sciences, vol. 2, Elsevier, London, 11564466
Puchtler H and Meloan SN (1985) On the chemistry of formaldehyde fixation and its effects on immune histochemical reactions. Histochemistry, 82, 201204 (doi: 10.1007/BF00501395)
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (
Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature, 405, 676679 (doi: 10.1038/35015063)
Roth BL and 7 others (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol., 63(6), 24212431
Ruth U (2002) Concentration and size distribution of microparticles in the NGRIP ice core (Central Greenland) during the last glacial period. (PhD dissertation, Berichte zur Polar-und Meeresforsch, Bremen)
Ruth U (2003) Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J. Geophys. Res., 108, 112 (doi: 10.1029/2002JD002376)
Ruth U and 5 others (2002) High-resolution microparticle profiles at NorthGRIP, Greenland: case studies of the calcium-dust relationship. Ann. Glaciol., 35, 237242 (doi:
Salzman GC (1999) Light scatter: detection and usage. Curr. Protoc. Cytom., 13, 18 (doi: 10.1002/0471142956.cy0113s09)
Schimel J (2001) Biogeochemical models: implicit vs. explicit microbiology. In Schulze ED and 6 others eds. Global biogeochemical cycles in the climate system. Academic Press, New York, 177183
Segawa T, Ushida K, Narita H, Kanda H and Kohshima S (2010) Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis. Polar Sci., 4(2), 215227 (doi: 10.1016/j.polar.2010.05.003)
Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New Jersey
Shapiro HM (2004) Lasers for flow cytometry in current protocols in cytometry. John Wiley and Sons, New York (doi: 10.1002/0471142956.cy0109s27)
Sheridan PP, Miteva VI and Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl. Environ. Microbiol., 69(4), 21532160 (doi: 10.1128/AEM.69.4.2153)
Singh BK, Bardgett RD, Smith P and Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol., 8(11), 779790 (doi: 10.1038/nrmicro2439)
Singh BK and 12 others (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ. Microbiol., 16, 24082420 (doi: 10.1111/1462-2920.12353)
Steen HB (1986) Simultaneous separate detection of low angle and large angle light scattering in an Arc Lamp-Based Flow Cytometer. Cytometry, 7, 445449 (doi: 10.1002/cyto.990070509)
Steen HB (1992) Noise, sensitivity, and resolution of flow cytometers. Cytometry, 13(8), 822830 (doi: 10.1002/cyto.990130804)
Steen HB (2000) Flow cytometry of bacteria: glimpses from the past with a view to the future. J. Microbiol. Methods, 42(1), 6574 (doi: 10.1016/S0167-7012(00)00177-9)
Steffensen JP (1997) The size distribution of microparticles from selected segments of Greenland ice core project ice core representing different climatic periods. J. Geophys. Res., 102(97), 26,75526,763 (doi: 10.1029/97JC01490)
Suller MT and Lloyd D (1999) Fluorescence monitoring of antibiotic-induced bacterial damage using flow cytometry. Cytometry, 35(3), 235241
Sun T and Morgan H (2010) Single-cell microfluidic Impedance cytometry: a review. Microfluid. Nanofluidics, 8(4), 423443 (doi: 10.1007/s10404-010-0580-9)
Vallelonga P and 12 others (2010) Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere potential source areas. Quat. Sci. Rev., 29(1–2), 247255 (doi: 10.1016/j.quascirev.2009.06.019)
Van Nevel S, Koetzsch S, Weilenmann H-U, Boon N and Hammes F (2013) Routine bacterial analysis with automated flow cytometry. J. Microbiol. Methods, 94(2), 7376 (doi: 10.1016/j.mimet.2013.05.007)
Vives-Rego J, Lebaron P and Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev., 24(4), 429448 (doi:
Walker VK, Palmer GR and Voordouw G (2006) Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl. Environ. Microbiol., 72(3), 17841792 (doi: 10.1128/AEM.72.3.1784-1792.2006)
Wang Y, Hammes F, De Roy K, Verstraete W and Boon N (2010) Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol., 28(8), 416424 (doi: 10.1016/j.tibtech.2010.04.006)
White D (2007) Physiology and biochemistry of prokaryotes. University Press, Oxford, New York
Whitman WB, Coleman DC and Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A., 95, 65786583 (doi: 10.1073/pnas.95.12.6578)
Willis KJ and Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science, 314, 12611265 (doi: 10.1126/science.1122667)
Willis KJ, Bailey RM, Bhagwat SA and Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol., 25, 583591 (doi: 10.1016/j.tree.2010.07.006)
Wobus A and 6 others (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol. Ecol., 46(3), 331347 (doi: 10.1016/S0168-6496(03)00249-6)
Wolff EW and 29 others (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat. Sci. Rev., 29(1–2), 285295 (doi: 10.1016/j.quascirev.2009.06.013)
Wood JC (1997) Establishing and maintaining system linearity. In Current protocols in cytometry. John Wiley and Sons, New York (doi: 10.1002/0471142956.cy0104s47)
Wood JC (1998) Fundamental flow cytometer properties governing sensitivity and resolution. Cytometry, 33, 260266 (doi: 10.1002/(SICI)1097-0320(19981001)33:2<260::AID-CYTO23>3.0.CO;2-R)
Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Boca Raton
Xiang SR, Shang TC, Chen Y and Yao TD (2009) Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice: minireview. FEMS Microbiol. Ecol., 70, 165176 (doi: 10.1111/j.1574-6941.2009.00759.x)
Yergeau E and 6 others (2012) Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J., 6(3), 692702 (doi: 10.1038/ismej.2011.124)
Zimmermann U, Pilwat G and Riemann F (1974) Dielectric breakdown of cell membranes. Biophys. J., 14, 881899 (doi: 10.1016/S0006-3495(74)85956-4)
Zimmermann U, Groves M, Schnabl H and Pilwat G (1980) Development of a new coulter counter system: measurement of the volume, internal conductivity, and dielectric breakdown voltage of a single guard cell protoplast of Vicia faba . J. Membr. Biol., 52(1), 3750 (doi: 10.1007/BF01869004)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 11
Total number of PDF views: 164 *
Loading metrics...

Abstract views

Total abstract views: 294 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd February 2018. This data will be updated every 24 hours.