Skip to main content
×
×
Home

Active lakes of Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial hydrological system

  • Helen Amanda Fricker (a1), Sasha P. Carter (a1), Robin E. Bell (a2) and Ted Scambos (a3)
Abstract
Abstract

A connected system of active subglacial lakes was revealed beneath Recovery Ice Stream, East Antarctica, by ICESat laser altimetry. Here we combine repeat-track analysis of ICESat (2003–09), Operation IceBridge laser altimetry and radio-echo sounding (2011 and 2012), and MODIS image differencing (2009–2011) to learn more about the lake activity history, the surface and bedrock topographic setting of the lakes and the constraints on water flow through the system. We extend the lake activity time series to 2012 for the three lower lakes and capture two major lake drainages. One lake underwent a large deflation between 2009 and 2011 while another lake, which had been continuously filling between 2003 and 2010, started to drain after 2011. Most of the active lakes are located in a ~ 1000 km long bedrock trough under the main trunk of Recovery Ice Stream, whose base is ~ 1500– 2000 m below present-day sea level. The hydrologic system beneath Recovery Ice Stream is controlled by this unusually pronounced bedrock topography, in contrast to most Antarctic systems studied to date, which are controlled by the ice surface topography. Hydrologic connections among the lakes appear to be direct and responsive, and we reproduce the lake activity using a simple subglacial water model. We discuss potential causes of non-steady hydrologic behavior in major Antarctic catchments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Active lakes of Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial hydrological system
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Active lakes of Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial hydrological system
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Active lakes of Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial hydrological system
      Available formats
      ×
Copyright
References
Hide All
Allen C (2010) IceBridge MCoRDS L2 ice thickness [2011–2012] (updated 2014). NASA Distributed Active Archive Center, National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/irmcr2
Bamber JL, Siegert MJ, Griggs JA, Marshall SJ and Spada G (2013) Paleofluvial mega-canyon beneath the central Greenland ice sheet. Science, 341(6149), 997999 (doi: 10.1126/science. 1239794)
Beem LH, Tulaczyk SM, King MA, Bougamont M, Fricker HA and Christoffersen P (2014) Variable deceleration of Whillans Ice Stream, West Antarctica. J. Geophys. Res., 119(F2), 212224 (doi: 10.1002/2013JF002958)
Bell RE, Studinger M, Shuman CA, Fahnestock MA and Joughin I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445(7130), 904907 (doi: 10.1038/nature05554)
Bell RE and 11 others (2011) Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331(6024), 15921595 (doi: 10.1126/science.1200109)
Bindschadler RA, Scambos TA, Choi H and Haran TM (2010) Ice sheet change detection by satellite image differencing. Remote Sens. Environ., 114(7), 13531362 (doi: 10.1016/j.rse. 2010.01.014)
Borsa AA, Moholdt G, Fricker HA and Brunt KM (2014) A range correction for ICESat and its potential impact on ice-sheet mass balance studies. Cryosphere, 8(2), 345357 (doi: 10.5194/tc-8–345–2014)
Carter SP, Blankenship DD, Young DA, Peters ME, Holt JW and Siegert MJ (2009a) Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial lake discharge. Earth Planet. Sci. Lett., 283(1–4), 2437 (doi:10.1016/j.epsl.2009.03.019)
Carter SP, Blankenship DD, Young DA and Holt JW (2009b) Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica. J. Glaciol., 55(194), 10251040 (doi: 10.3189/002214309790794931)
Carter SP and 6 others (2011) Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry. J. Glaciol., 57(206), 10981112 (doi: 10.3189/002214311798843421)
Carter SP and Fricker HA (2012) The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol., 53(60 Pt 2), 267280 (doi: 10.3189/2012AoG60A119)
Carter SP, Fricker HA and Siegfried MR (2013) Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J. Glaciol., 59(218), 11471162 (doi: 10.3189/2013JoG13J085)
Creyts TT and Schoof CG (2009) Drainage through subglacial water sheets. J. Geophys. Res., 114(F4), F04008 (doi: 10.1029/2008JF001215)
Dupain-Triel JL (1791) La France considérée dans les différentes hauteurs de ses plaines: ouvrage spécialement destiné à l’instruction de la jeunesse. (BN, Cartes et Plans, map No. Ge. D.15126) Hérault, Paris
Engelhardt H and Kamb B (1997) Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol., 43(144), 207230
Evatt GW, Fowler AC, Clark CD and Hulton NRJ (2006) Subglacial floods beneath ice sheets. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 17691794 (doi: 10.1098/rsta.2006.1798)
Faure G and Mensing TM (2010) The Transantarctic Mountains: rocks, ice, meteorites and water, Springer, Dordrecht
Flament T, Berthier E and Rémy F (2014) Cascading water underneath Wilkes Land, East Antarctic Ice Sheet, observed using altimetry and digital elevation models. Cryosphere, 8(2), 673687 (doi: 10.5194/tc-8–673–2014)
Flowers GE and Clarke GKC (2002) A multicomponent coupled model of glacier hydrology: 1. Theory and synthetic examples. J. Geophys. Res., 107(B11), 2287 (doi: 10.1029/2001JB001122)
Fowler AC (2009) Dynamics of subglacial floods. Proc. R. Soc. London, Ser. A, 465(2106), 18091828 (doi: 10.1098/rspa.2008.0488)
Fretwell P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7–375–2013)
Fricker HA and Scambos T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303315 (doi:10.3189/002214309788608813)
Fricker HA, Scambos T, Bindschadler R and Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/science.1136897)
Fricker HA, Scambos T, Carter S, Davis C, Haran T and Joughin I (2010) Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica. J. Glaciol., 56(196), 187199 (doi: 10.3189/002214310791968557)
Goodwin ID (1988) The nature and origin of a jökulhlaup near Casey Station, Antarctica. J. Glaciol., 34(116), 95101
Gray L, Joughin I, Tulaczyk S, Spikes VB, Bindschadler R and Jezek K (2005) Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(3), L03501 (doi:10.1029/2004GL021387)
Haran T, Bohlander J, Scambos T and Fahnestock M (2005) MODIS mosaic of Antarctica (MOA 2009) image map (updated 2014). National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/moa/
Hellmer H, Kauker F, Timmermann R, Determann J and Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485(7397), 225228 (doi: 10.1038/nature11064)
Hulbe C and Fahnestock M (2007) Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica. J. Geophys. Res., 112(F3), F03S27 (doi: 10.1029/2006JF000603)
Jenkins A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 22792294 (doi: 10.1175/JPO-D-11–03.1)
Jezek KC, Farness K, Carande R, Wu X and Labelle-Hamer N (2003) RADARSAT 1 synthetic aperture radar observations of Antarctica: Modified Antarctic Mapping Mission, 2000. Radio Sci., 38(4), 8067 (doi: 10.1029/2002RS002643)
Joughin I and Bamber JL (2005) Thickening of the ice stream catchments feeding the Filchner–Ronne Ice Shelf, Antarctica. Geophys. Res. Lett., 32(17), L17503 (doi: 10.1029/2005GL023844)
Joughin IR, Tulaczyk S and Engelhardt HF (2003) Basal melt beneath Whillans Ice Stream and Ice Streams A and C, West Antarctica. Ann. Glaciol., 36, 257262 (doi: 10.3189/172756403781816130)
Joughin I, Bamber JL, Scambos T, Tulaczyk S, Fahnestock M and MacAyeal DR (2006) Integrating satellite observations with modelling: basal shear stress of the Filcher–Ronne ice streams, Antarctica. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 17951814 (doi: 10.1098/rsta.2006.1799)
Kamb B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)
Kingslake J and Ng F (2013) Modelling the coupling of flood discharge with glacier flow during jökulhlaups. Ann. Glaciol., 54(63 Pt 1), 2531 (doi: 10.3189/2013AoG63A331)
Krabill WB (2014) IceBridge ATM L2 Icessn elevation, slope, and roughness, Version 2 (updated 2014). NASA Distributed Active Archive Center, National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/ilatm2
Langley K and 8 others (2011) Recovery Lakes, East Antarctica: radar assessment of sub-glacial water extent. Geophys. Res. Lett., 38(5), L05501 (doi: 10.1029/2010GL046094)
Le Brocq AM, Hubbard A, Bentley MJ and Bamber JL (2008) Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East Antarctica. Geophys. Res. Lett., 35(16), L16503 (doi: 10.1029/2008GL034728)
Le Brocq AM and 10 others (2013) Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nature Geosci., 6(11), 945948 (doi: 10.1038/ngeo1977)
McMillan M, Corr H, Shepherd A, Ridout A, Laxon S and Cullen R (2013) Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. Geophys. Res. Lett., 40(16), 43214327 (doi: 10.1002/grl.50689)
Parizek BR, Alley RB and Hulbe CL (2003) Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Ann. Glaciol., 36, 251256 (doi:10.3189/172756403781816167)
Peters LE, Anandakrishnan S, Alley RB and Smith AM (2007) Extensive storage of basal meltwater in the onset region of a major West Antarctic ice stream. Geology, 35(3), 251254 (doi:10.1007/s003820050271)
Pritchard HD, Arthern RJ, Vaughan DG and Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)
Quinn PF, Ostendorf B, Beven K and Tenhunen J (1998) Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. Hydrol. Earth Syst. Sci., 2(1), 5164 (doi:10.5194/hess-2–51–1998)
Rignot E, Mouginot J and Scheuchl B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Ross N and 9 others (2012) Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica. Nature Geosci., 5(6), 393396 (doi: 10.1038/ngeo1468)
Ross N and 8 others (2014) The Ellsworth Subglacial Highlands: inception and retreat of the West Antarctic Ice Sheet. Geol. Soc. Am. Bull., 126(1–2), 315 (doi: 10.1130/B30794.1)
Saunders W (2000) Preparation of DEMs for use in environmental modeling analysis. In Maidment D and Djokic D eds. Hydrologic and hydraulic modeling support with Geographic Information Systems. Environmental Systems Research Institute, Redlands, CA
Scambos TA, Haran TM, Fahnestock MA, Painter TH and Bohlander J (2007) MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242257 (doi: 10.1016/j. rse.2006.12.020)
Scambos TA, Berthier E and Shuman CA (2011) The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol., 52(59), 7482 (doi:10.3189/172756411799096204)
Scheuchl B, Mouginot J and Rignot E (2012) Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009. Cryosphere, 6(5), 10191030 (doi:10.5194/tc-6–1019–2012)
Schroeder DM, Blankenship DD and Young DA (2013) Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proc. Natl Acad. Sci. USA (PNAS), 110(30), 12 22512 228 (doi: 10.1073/pnas.1302828110)
Shreve RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214
Siegert MJ, Carter S, Tabacco I, Popov S and Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct. Sci., 17(3), 453460 (doi: 10.1017/S0954102005002889)
Siegert MJ and 8 others (2014) Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet. Cryosphere, 8(1), 1524 (doi: 10.5194/tc-8–15–2014)
Siegfried MR, Fricker HA, Roberts M, Scambos TA and Tulaczyk S (2014) A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophys. Res. Lett., 41(3), 891898 (doi: 10.1002/2013GL058616)
Smith BE, Fricker HA, Joughin IR and Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573595 (doi:10.3189/002214309789470879)
Stearns LA, Smith BE and Hamilton GS (2008) Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geosci., 1(8), 827831 (doi: 10.1038/ngeo356)
Swithinbank C, Brunk K and Sievers H (1998), A glaciological map of Filchner–Ronne Ice Shelf, Antarctica. Ann. Glaciol., 11, 150155
Vaughan DG and Arthern R (2007) Why is it hard to predict the future of ice sheets? Science, 315(5818), 15031504 (doi:10.1126/science.1141111)
Wingham DJ, Siegert MJ, Shepherd A and Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440(7087), 10331036 (doi: 10.1038/nature04660)
Wolovick MJ, Bell RE, Creyts TT and Frearson N (2013) Identification and control of subglacial water networks under Dome A, Antarctica. J. Geophys. Res., 118(1), 140154 (doi:10.1029/2012JF002555)
Wright A and Siegert M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct. Sci., 24(6), 659664 (doi: 10.1017/S095410201200048X)
Wright AP, Siegert MJ, Le Brocq AM and Gore DB (2008) High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophys. Res. Lett., 35(17), L17504 (doi: 10.1029/2008GL034937)
Wright AP and 12 others (2012) Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. J. Geophys. Res., 117(F1), F01033 (doi: 10.1029/2011JF002066)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 22 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 18th December 2017. This data will be updated every 24 hours.