Skip to main content

Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution

  • Scott B. Luthcke (a1), T.J. Sabaka (a1), B.D. Loomis (a2), A.A. Arendt (a3), J.J. McCarthy (a2) and J. Camp (a4)...

We have determined the ice mass evolution of the Antarctic and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arcdeg equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is −380 ± 31 Gt a−1, equivalent to −1.05 ± 0.09 mm a−1 sea-level rise. Over the same time period we estimate the mass acceleration to be −41 ± 27 Gt a−2 , equivalent to a −0.11 ± 0.08 mm a−2 sea-level acceleration. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution
      Available formats
Hide All
Alley RB and 13 others (2010) History of the Greenland Ice Sheet: paleoclimatic insights. Quat. Sci. Rev., 29(15–16), 17281756 (doi: 10.1016/j.quascirev.2010.02.007)
Barletta VR, Sørensen LS and Forsberg R (2012) Variability of mass changes at basin scale for Greenland and Antarctica. Cryos. Discuss., 6(4), 33973446 (doi: 10.5194/tcd-6-3397-2012)
Barry R and Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge
Chao BF, O’Connor WP, Chang ATC, Hall DK and Foster JL (1987) Snow load effect on the Earth’s rotation and gravitational field, 1979–1985. J. Geophys. Res., 92(B9), 94159422
Chen JL, Wilson CR and Tapley BD (2011) Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res., 116(B7), B07406 (doi: 10.1029/2010JB007789)
Cogley JG and 10 others (2011) Glossary of glacier mass balance and related terms. (IHP-VII Technical Documents in Hydrology 86). UNESCO–International Hydrological Programme, Paris
Ek MB and 7 others (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108(D22), 8851 (doi: 10.1029/2002JD003296)
Ettema J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/2009GL038110)
Farrell WE (1972) Deformation of the Earth by surface loads. Rev. Geophys. Space Phys., 10(3), 761797 (doi: 10.1029/RG010i003p00761)
Fleming K and Lambeck K (2004) Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quat. Sci. Rev., 23(9–10), 10531077 (doi: 10.1016/j.quascirev.2003.11.001)
Fricker HA and Padman L (2012) Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. J. Geophys. Res., 117(C2), C02026 (doi: 10.1029/2011JC007126)
Geruo A, Wahr J and Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int., 192(2), 557572 (doi: 10.1093/gji/ggs030)
Häkkinen S and Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science, 304(5670), 555559 (doi: 10.1126/science.1094917)
Han S-C, Jekeli C and Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophys. Res., 109(B4), B04403 (doi: 10.1029/2003JB002501)
Hock R, De Woul M and Radić V (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett., 36(7), L07501 (doi: 10.1029/2008GL037020)
Howat IM, Joughin IR and Scambos TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561 (doi: 10.1126/science.1138478)
Howat IM, Joughin I, Fahnestock M, Smith BE and Scambos T (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate. J. Glaciol., 54(187), 646660 (doi: 10.3189/002214308786570908)
Ivins ER, Watkins MM, Yuan D-N, Dietrich R, Casassa G and Rülke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J. Geophys. Res., 116(B2), B02403 (doi: 10.1029/2010JB007607)
Ivins ER, James TS, Wahr J, Schrama EJO, Landerer FW and Simon KM (in press) Antarctic contribution to sea-level rise observed by GRACE with improved GIA correction. J. Geophys. Res. (doi: 10.1002/jgrb.50208)
Jacob T, Wahr J, Pfeffer WT and Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514518 (doi: 10.1038/nature10847)
Jiskoot H, Juhlin D, St Pierre H and Citterio M (2012) Tidewater glacier fluctuations in central East Greenland coastal and fjord regions (1980–2005). Ann. Glaciol., 53(60 Pt 1), 3544 (doi: 10.3189/2012AoG60A030)
Joughin I and 8 others (2008) Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res., 113(F1), F01004 (doi: 10.1029/2007JF000837)
Joughin I, Smith BE, Howat IM, Scambos T and Moon T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)
Joughin I and 6 others (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbræ, Greenland: observation and model-based analysis. J. Geophys. Res., 117(F2), F02030 (doi: 10.1029/2011JF002110)
Khan SA, Wahr J, Bevis M, Velicogna I and Kendrick E (2010) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett., 37(6), L06501 (doi: 10.1029/2010GL042460)
King MA, Bingham RJ, Moore P, Whitehouse PL, Bentley MJ and Milne GA (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491(7425), 586589 (doi: 10.1038/nature11621)
Klees R and 6 others (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys. J. Int., 175(2), 417432 (doi: 10.1111/j.1365-246X.2008.03922.x)
Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod., 81(11), 733749 (doi: 10.1007/s00190-007-0143-3)
Larsen CF, Motyka RJ, Freymueller JT, Echelmeyer KA and Ivins ER (2005) Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreats. Earth Planet. Sci. Lett., 237(3–4), 548560 (doi: 10.1016/j.epsl.2005.06.032)
Lee J and Lund R (2004) Revisiting simple linear regression with autocorrelated errors. Biometrika, 91(1), 240245
Lenaerts JTM, Van den Broeke MR, Van de Berg WJ, Van Meijgaard E and Kuipers Munneke P (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713)
Luthcke SB and 8 others (2006a) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 12861289 (doi: 10.1126/science.1130776)
Luthcke SB, Rowlands DD, Lemoine FG, Klosko SM, Chinn D and McCarthy JJ (2006b) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys. Res. Lett., 33(2), L02402 (doi: 10.1029/2005GL024846)
Luthcke SB, Arendt AA, Rowlands DD, McCarthy JJ and Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54(188), 767777 (doi: 10.3189/002214308787779933)
Mernild SH, Mote TL and Liston GE (2011) Greenland ice sheet surface melt extent and trends: 1960–2010. J. Glaciol., 57(204), 621628 (doi: 10.3189/002214311797409712)
Moon T, Joughin I, Smith B and Howat I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336(6081), 576578 (doi: 10.1126/science.1219985)
Moritz H (1980) Advanced physical geodesy. Abacus, Tunbridge Wells
Murray T and 10 others (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res., 115(F3), F03026 (doi: 10.1029/2009JF001522)
Paulson A, Zhong S and Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int., 171(2), 497508 (doi: 10.1111/j.1365-246X.2007.03556.x)
Peltier WR (2004) Global glacial isostatic adjustment and the surface of the ice-age Earth: the ICE-5G(VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149 (doi: 10.1146/
Pritchard HD, Luthcke SB and Fleming AH (2010) Understanding ice-sheet mass balance: progress in satellite altimetry and gravimetry. J. Glaciol., 56(200), 11511161 (doi: 10.3189/002214311796406194)
Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, Van den Broeke MR and Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502505 (doi: 10.1038/nature10968)
Raup BH, Kieffer HH, Hare TM and Kargel JS (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target. IEEE Trans. Geosci. Remote Sens., 38(2), 11051112 (doi: 10.1109/36.841989)
Ray RD (1999) A global ocean tide model from TOPEX/Poseidon altimetry/GOT99.2 (NASA Tech. Rep. NASA/TM-1999-209478) NASA Goddard Space Flight Center, Greenbelt, MD
Ray RD and Luthcke SB (2006) Tide model errors and GRACE gravimetry: towards a more realistic assessment. Geophys. J. Int., 167(3), 10551059 (doi: 10.1111/j.1365-246X.2006.03229.x)
Ray RD and Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann. Geophys., 21(8), 18971910
Rignot E and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106110 (doi: 10.1038/ngeo102)
Rignot E, Velicogna I, Van den Broeke MR, Monaghan A and Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5), L05503 (doi: 10.1029/2011GL046583)
Rodell M and 13 others (2004) The global land data assimilation system. Bull. Am. Meteorol. Soc., 85(3), 381394 (doi: 10.1175/BAMS-85-3-381)
Rowlands DD, Ray RD, Chinn DS and Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a gravity mapping mission. J. Geod., 76(6–7), 307316 (doi: 10.1007/s00190-002- 0255-8)
Rowlands DD and 7 others (2010) Global mass flux solutions from GRACE: a comparison of parameter estimation strategies: mass concentrations versus Stokes coefficients. J. Geophys. Res., 115(B1), B01403 (doi: 10.1029/2009JB006546)
Sabaka TJ, Rowlands DD, Luthcke SB and Boy J-P (2010) Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. J. Geophys. Res., 115(B11), B11403 (doi: 10.1029/2010JB007533 )
Sasgen I and 8 others (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333–334, 293303 (doi: 10.1016/j.epsl.2012.03.033)
Schaefer JR and 17 others eds. (2012) The 2009 eruption of Redoubt Volcano, Alaska. (DGGS Report of Investigations 2011-5) Division of Geological & Geophysical Surveys, Department of Natural Resources, State of Alaska, Fairbanks, AK
Schrama EJO and Wouters B (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res., 116(B2), B02407 (doi: 10.1029/2009JB006847)
Seber GAF and Wild CJ (1989) Nonlinear regression. Wiley, New York
Shepherd A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Shuman CA, Berthier E and Scambos TA (2011) 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol., 57(204), 737754 (doi: 10.3189/002214311797409811)
Swenson S and Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33(8), L08402 (doi: 10.1029/2005GL025285)
Swenson S, Chambers D and Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113(B8), B08410 (doi: 10.1029/2007JB005338)
Tapley BD, Bettadpur S, Ries JC, Thompson PF and Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science, 305(5683), 503505 (doi: 10.1126/science.1099192)
Tedesco M and Monaghan AJ (2009) An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophys. Res. Lett., 36(18), L18502 (doi: 10.1029/2009GL039186)
Tedesco M, Fettweis X, Van den Broeke M, Van de Wal R and Smeets P (2008) Extreme snowmelt in northern Greenland during summer 2008. Eos, 89(41), 391 (doi: 10.1029/2008EO410004)
Truffer M, Harrison WD and March RS (2005) Correspondence. Record negative glacier balances and low velocities during the 2004 heatwave in Alaska, USA: implications for the interpretation of observations by Zwally and others in Greenland. J. Glaciol., 51(175), 663664 (doi: 10.3189/172756505781829016)
Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36(19), L19503 (doi: 10.1029/2009GL040222)
Velicogna I and Wahr J (2005) Greenland mass balance from GRACE. Geophys. Res. Lett., 32(18), L18505 (doi: 10.1029/2005GL023955)
Whitehouse PL, Bentley MJ, Milne GA, King MA and Thomas ID (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int., 190(3), 14641482 (doi: 10.1111/j.1365-246X.2012.05557.x)
Wingham DJ, Wallis DW and Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys. Res. Lett., 36(17), L17501 (doi: 10.1029/2009GL039126)
Wu Z and Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal., 1(1) (doi: 10.1142/S1793536909000047)
Zwally HJ and Giovinetto MB (2011) Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992–2009. Surv. Geophys., 32(4–5),351376 (doi: 10.1007/s10712-011-9123-5)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 4
Total number of PDF views: 41 *
Loading metrics...

Abstract views

Total abstract views: 88 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 23rd January 2018. This data will be updated every 24 hours.