Skip to main content Accesibility Help
×
×
Home

Assessment of ice flow dynamics in the zone close to the calving front of Antarctic ice shelves

  • Martin G. Wearing (a1) (a2), Richard C.A. Hindmarsh (a1) and M. Grae Worster (a2)
Abstract

We investigate the relationship between four ice-shelf characteristics in the area close to the calving front: ice flow speed, strain rate, ice thickness and shelf width. Data are compiled for these glaciological parameters at the calving fronts of 22 Antarctic ice shelves. Clarification concerning the viscous supply of ice to the calving front is sought following the empirical calving law of Alley and others (2008), derived from a similar but smaller dataset, and the scaling analysis of Hindmarsh (2012). The dataset is analysed and good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of ice shelves that are laterally confined and have uniform rheology. The lateral confinement ensures flow is aligned in the along-shelf direction, and uniform rheological parameters mean resistance to flow is provided by near-stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute to marginal weakening or the presence of ice tongues.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessment of ice flow dynamics in the zone close to the calving front of Antarctic ice shelves
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessment of ice flow dynamics in the zone close to the calving front of Antarctic ice shelves
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessment of ice flow dynamics in the zone close to the calving front of Antarctic ice shelves
      Available formats
      ×
Copyright
Corresponding author
Correspondence: Martin G. Wearing <marwe@bas.ac.uk>
References
Hide All
Albrecht, T and Levermann, A (2012) Fracture field for large-scale ice dynamics. J. Glaciol., 58(207), 165176 (doi: 10.3189/2012JoG11J191)
Alley, RB and 7 others (2008) A simple law for ice-shelf calving. Science, 322(5906), 1344 (doi: 10.1126/science.1162543)
Bassis, JN and Jacobs, S (2013) Diverse calving patterns linked to glacier geometry. Nature Geosci., 6(10), 833836 (doi: 10.1038/ngeo1887)
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(3–4), 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Cuffey, K and Paterson, W (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Fretwell, P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7-375-2013)
Haran, T, Bohlander, J, Scambos, T, Painter, T and Fahnestock, M (2005) MODIS Mosaic of Antarctica 2003–2004 (MOA2004) Image Map. National Snow and Ice Data Center, Boulder, CO (doi: 10.7265/N5ZK5DM5)
Hindmarsh, RCA (2012) An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. J. Glaciol., 58(208), 375387 (10.3189/2012JoG11J206)
Holland, PW and Welsch, RE (1977) Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Meth., 6(9), 813827 (doi: 10.1080/03610927708827533)
Joughin, I, MacAyeal, DR and Tulaczyk, S (2004) Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res. B Solid Earth, 109(9), 120 (doi: 10.1029/2003JB002960)
Rignot, E, Casassa, G, Gogineni, P, Krabill, W, Rivera, A and Thomas, R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401 (doi: 10.1029/2004GL020697)
Rignot, E, Mouginot, J and Scheuchl, B (2011a) Ice flow of the Antarctic ice sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Rignot, E, Mouginot, J and Scheuchl, B (2011b) MEaSUREs InSAR-Based Antarctica Ice Velocity Map. National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO (doi: 10.5067/MEASURES/CRYOSPHERE/nsidc-0484.001)
Rott, H, Rack, W, Skvarca, P and De Angelis, H (2002) Northern Larsen Ice Shelf, Antarctica: further retreat after collapse. Ann. Glaciol., 34, 277282 (doi: 10.3189/172756402781817716)
Sandhäger, H (2003) Numerical study on the influence of fractures and zones of weakness on the flow regime of Larsen Ice Shelf. FRISP Rep. 14, 95101
Scambos, T, Bohlander, J, Shuman, C and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), 20012004 (doi: 10.1029/2004GL020670)
Shepherd, A and 46 others (2012) A reconciled estimate of ice sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Vaughan, DG (1993) Relating the occurrence of crevasses to surface strain rates. J. Glaciol., 39(131), 255266 (doi: 10.1016/0148-9062(94)90888-5)
Vieli, A, Payne, AJ, Du, Z and Shepherd, A (2006) Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula. Philos. Trans. A. Math. Phys. Eng. Sci., 364(1844), 18151839 (doi: 10.1098/rsta.2006.1800)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed