Skip to main content Accessibility help

Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland



We assess ice loss and velocity changes between 1985 and 2014 of three tidewater and five-land terminating glaciers in Godthåbsfjord (Nuup Kangerlua), Greenland. Glacier thinning accounted for 43.8 ± 0.2 km3 of ice loss, equivalent to 0.10 mm eustatic sea-level rise. An additional 3.5 ± 0.3 km3 was lost to the calving retreats of Kangiata Nunaata Sermia (KNS) and Narsap Sermia (NS), two tidewater glaciers that exhibited asynchronous behavior over the study period. KNS has retreated 22 km from its Little Ice Age (LIA) maximum (1761 AD), of which 0.8 km since 1985. KNS has stabilized in shallow water, but seasonally advects a 2 km long floating tongue. In contrast, NS began retreating from its LIA moraine in 2004–06 (0.6 km), re-stabilized, then retreated 3.3 km during 2010–14 into an over-deepened basin. Velocities at KNS ranged 5–6 km a−1, while at NS they increased from 1.5 to 5.5 km a−1 between 2004 and 2014. We present comprehensive analyses of glacier thinning, runoff, surface mass balance, ocean conditions, submarine melting, bed topography, ice mélange and conclude that the 2010–14 NS retreat was triggered by a combination of factors but primarily by an increase in submarine melting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Asynchronous behavior of outlet glaciers feeding Godthåbsfjord (Nuup Kangerlua) and the triggering of Narsap Sermia's retreat in SW Greenland
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Roman J. Motyka <>


Hide All
Amundson, JM and 5 others (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland, Geophys. Res. Lett., 35(22), L22501 (doi: 10.1029/2008GL035281)
Amundson, JM and 5 others (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1) (doi: 10.1029/2009JF001405)
Bamber, JL, Ekholm, S and Krabill, WB (2001) A new, high resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res., 106, 67336745 (doi: 10.1029/2000JB900365)
Bartholomaus, TC, Larsen, CF and O'Neel, S (2013) Does calving matter? Evidence for significant submarine melt. Earth Planet. Sci. Lett., 380, 2130 (doi: 10.1016/j.epsl.2013.08.14)
Bartholomaus, TC and 11 others (2016) Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Ann. Glaciol., 57(73), 2538 (doi: 10.1017/aog.2016.19)
Bendtsen, J, Mortensen, J, Lennert, K and Rysgaard, S (2015a) Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: the role of subglacial freshwater discharge. Geophys. Res. Lett., 42(10), 40894095 (doi: 10.1002/2015GL063846)
Bendtsen, J, Mortensen, J and Rysgaard, S (2015b) Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords. Ocean Dynam., 65, 15351546 (doi: 10.1007/s10236-015-0883-1)
Carr, JR, Stokes, CR and Vieli, A (2013) Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: twenty years of rapid change. Progr. Phys. Geogr., 37(4), 436467 (doi: 10.1177/0309133313483163)
Cassotto, R, Fahnestock, MA, Amundson, JM, Truffer, M and Joughin, I (2015) Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ. Greenland. J. Glaciol., 61(225) (doi: 10.3189/2015JoG13J235)
Cook, S and 7 others (2014) Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere, 8(3), 827841 (doi: 10.5194/tc-8-827-2014)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41 (doi: 10.1002/2013GL059010)
Ettema, J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501 (doi: 10.1029/2009GL038110)
Fahnestock, MA and 5 others (2015) Rapid large-area mapping of ice flow using Landsat 8. Rem. Sens. Env., 185, 8494 (doi: 10.1016/j.rse.2015.11.023)
Feldman, GC and McClain, CR (2015) Ocean Color Web: MODIS- Terra Reprocessing.
Foga, S, Stearns, LA and Van der Veen, CJ (2014) Application of satellite remote sensing techniques to quantify terminus and ice Mélange behavior at Helheim Glacier, East Greenland. Marine Tech. Soc. J., 58(5), 8191
Fried, MJ and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42, 93289336 10.1002/2015GL065806
Hallet, B, Hunter, L and Bogen, J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet. Change, 12, 213235
Holland, DM, Thomas, R, de Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Jenkins, A (2011) Convection-driven melting near the Grounding lines of Ice Shelves and Tidewater Glaciers. J. Phys. Oceanogr., 41(12), 22792294 (doi: 10.1175/JPO-D-11-03.1)
Joughin, I and 5 others (2008) Seasonal speedup along the western flank of the Greenland ice sheet. Science, 113, F04006 (doi: 10.1126/science1153288)
Joughin, I, Smith, BE, Howat, IM, Scambos, T and Moon, T (2010a) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)
Joughin, I, Smith, BE, Howat, IM and Scambos, T (2010b) MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA (doi: 10.5067/MEASURES/CRYOSPHERE/nsidc-0478.001)
Kjær, KH and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in Northwestern Greenland. Science, 337(6094), 569573 (doi: 10.1126/science.1220614)
Kjeldsen, KK and 15 others (2015) Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since 1900. Nature, 528, 396400 (doi: 10.1038/nature16183)
Korona, J, Berthier, E, Bernard, M, Remy, F and Thouvenot, E (2009) SPIRIT-SPOT 5 stereoscopic survey of Polar Ice: reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS J. Photogramm. Rem. Sens, 64(2), 204212
Korsgaard, NJ, Nuth, C, Khan, SA, Kjeldsen, KK, Bjørk, AA, Schomacker, A and Kjær, KH (2016) Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data, 3, 160032, (doi: 10.1038/sdata.2016.32)
Krabill, WB (2014) IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Data for 1993–2014. NASA Distributed Active Archive Center at the National Snow and Ice Data Center, Boulder, Colorado, USA. Digital media.
Land Processes Distributed Active Archive Center (LP DAAC) (2001) ASTER L1A Reconstructed Unprocessed Instrument Data. Version 3. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (, accessed January, 2015, at
Langen, PL and 13 others (2015) Quantifying energy and mass fluxes controlling Godthåbsfjord freshwater input in a 5-km simulation (1991–2012). J. Climate, 28, 36943713 (doi: 10.1175/JCLI-D-14-00271.1)
Lea, JM and 7 others (2014a) Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859-present. Cryosphere, 8(6), 20312045
Lea, JM and 8 others (2014b) Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling. J. Glaciol., 60(220), 333344 (doi: 10.3189/2014JoG13J163)
Leclercq, PW and 5 others (2012) Brief communication: historical glacier length changes in West Greenland. Cryosphere, 6, 13391343
Lucas-Picher, P and 5 others (2012) Very high resolution in regional climate model simulations for Greenland: identifying added value. J. Geophys. Res., 117(D2), D02108 (doi: 10.1029/2011JD016267)
McNabb, RW and Hock, R (2014) Alaska tidewater glacier terminus positions, 1948–2012. J. Geophys. Res.: Earth Surf., 119(2), 153167 (doi: 10.1002/2013JF002915)
Meier, MF and Post, A (1987) Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058 (doi: 10.1029/JB092iB09p09051)
Mercer, JH (1961) The response of fjord glaciers to changes in the firn limit. J. Glaciol., 9(29), 850858
Moon, T and Joughin, I (2008) Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. J. Geophys. Res, 13(F2) (doi: 10.1029/2007jF000927)
Moon, T, Joughin, I and Smith, B (2015) Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J. Geophys. Res.: Earth Surf., 120(5), 818833 (doi: 10.1002/2015JF003494)
Morlighem, M and 5 others (2011) A mass conservation approach for mapping glacier ice thickness. Geophys. Res. Lett., 38, L19503 (doi: 10.1029/2011GL048659)
Morlighem, M, Rignot, E, Mouginot, J, Seroussi, H and Larour, E (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geosci., 7(6) (doi: 10.1038/ngeo2167)
Morlighem, M, Rignot, E, Mouginot, J, Seroussi, H and Larour, E (2015) IceBridge BedMachine Greenland, Version 2. NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA (doi: 10.5067/AD7B0HQNSJ29)
Mortensen, J, Lennert, K, Bendtsen, J and Rysgaard, S (2011) Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res., 116(C1), C01013 (doi: 10.1029/2010JC006528)
Mortensen, J and 6 others (2013) On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. Oceans, 118, 13821395 (doi: 10.1002/jgrc.20134)
Mortensen, J, Bendtsen, J, Lennert, K and Rysgaard, S (2014) Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N), J. Geophys. Res. Earth Surf., 119, 25912603 (doi: 10.1002/2014JF003267)
Motyka, RJ, Hunter, L, Echelmeyer, KA and Connor, CL (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36(1), 5765 (doi: 10.3189/172756403781816374)
Motyka, RJ, Fahnestock, M and Truffer, M (2010) Volume change of Jakobshavn Isbrae, West Greenland: 1985–1997 – 2007. J. Glaciol., 56(198), 635646
Motyka, RJ and 5 others (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), 117 (doi: 10.1029/2009JF001632)
Motyka, RJ, Dryer, WP, Amundson, J, Truffer, M and Fahnestock, M (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40(19), 51535158 (doi: 10.1002/grl.51011)
Noh, MJ and Howat, IM (2015) Automated stereo-photogrammetric DEM generation at high latitudes: surface extraction from TIN-Based Search Minimization (SETSM) validation and demonstration. GIScience Rem. Sens., 52, 198217 (doi: 10.1080/15481603.2015.1008621)
O'Leary, M and Christoffersen, P (2013) Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere, 7(1), 119128 (doi: 10.5194/tc-7-119-2013)
O'Neel, S, Echelmeyer, K and Motyka, RJ (2003) Short-term variations in calving at a retreating tidewater glacier: LeConte Glacier, Alaska. J. Glaciol., 49(167), 587598
Peters, IR and 6 others (2015) Dynamic jamming of iceberg-choked fjords. Geophys. Res. Lett., 42 (doi: 10.1002/2014GL062715)
Pfeffer, WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3) (doi: 10.1029/2006JF000590)
Post, A and Motyka, RJ (1995) Taku and LeConte Glaciers, Alaska: calving-speed of late-Holocene asynchronous advances and retreats. Phys. Geogr., 16, 5982
Post, A, O'Neel, S, Motyka, RJ and Streveler, G (2011) A complex relationship between calving glaciers and climate. Eos, Trans. Am. Geophys. Union, 92(37), 305 (doi: 10.1029/2011EO370001)
Ribergaard, MH (2014) Oceanographic investigations off West Greenland 2013. Danish Meteorological Institute, Center for Ocean and Ice, Copenhagen, Denmark, Report May 2014, 50 p
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5763), 986990 (doi: 10.1126/science.1121381)
Rignot, E, Koppes, M and Velicogna, I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3(3), 187191 (doi: 10.1038/ngeo765)
Rignot, E, Velicogna, I, van den Broeke, MR, Monaghan, A and Lenaerts, JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503 (doi: 10.1029/2011GL046583)
Rolstad, C, Haug, T and Denby, B (2009) Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J. Glaciol., 55(192), 666680
Sciascia, R, Straneo, F, Cenedese, C and Heimbach, P (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118 (doi: 10.1002/jgrc.20142)
Shepherd, A and 45 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189 (doi: 10.1126/science.1228102)
Straneo, F and 15 others (2013) Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Met. Soc., 94(8), 11311144 (doi: 10.1175/BAMS-D-12-00100.1)
Truffer, M and Motyka, RJ (2016) Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings. Rev. Geophys., 54 (doi: 10.1002/2015RG000494)
van As, D and 10 others (2014) Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). J. Glaciol., 60, 19 (doi: 10.3189/2014JoG13J065)
Van den Broeke, MR and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
Vieli, A and Nick, FM (2011) Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32(4–5), 437458 (doi: 10.1007/s10712-011-9132-4)
Walter, F and 5 others (2010) Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett., 37(15), 15 (doi: 10.1029/2010GL043201)
Warren, CR (1991) Terminal environment, trough geometry, and recent fluctuations of West Greenland glaciers. Boreas, 20, 115
Warren, CR and Glasser, NF (1992) Contrasting response of South Greenland glaciers to recent climatic change. Arct. Alpine Res., 24(2), 124132
Weidick, A, Bennike, O, Citterio, M and Nørgaard-Pedersen, N (2012) Neoglacial and historical glacier changes around Kangersuneq Fjord in southern West Greenland. Geol. Surv. Den. Greenl. Bull., 27
Xu, Y, Rignot, E, Fenty, I, Menemenlis, D and Flexas, MM (2013) Subaqueous melting of Store Glacier, west Greenland, from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40 (doi: 10.1002/grl.50825)


Type Description Title
Supplementary materials

Motyka supplementary material
Motyka supplementary material 1

 Unknown (6.7 MB)
6.7 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed