Skip to main content

Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet

  • Andrew J. Tedstone (a1) and Neil S. Arnold (a1)

The viability of employing sediment plumes emanating from outlets along the western margin of the Greenland ice sheet as indicators of runoff is assessed. An automated sediment plume quantification system based on daily 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) band 1 reflectance imagery is developed. Coherent plumes are identified using spectral thresholds and polygon tracing. Validation employs imagery quality-control procedures and manual verification of plume areas. Outlets at land-terminating margins with wide and straight fjord geometries deliver the most accurate and consistent results. Plume area observations are also possible at marine-terminating margins with relatively static fronts and low proximal sea-ice concentrations. Variability in plume area is examined with reference to Special Satellite Microwave Imager (SSM/I)-derived daily melt extent at the hydrologic catchment scale. At annual timescales, plume areas tend to co-vary with surface melt extent, indicating that more mass is lost by runoff during years of extensive melting. Some synchronicity in plume areas from different catchments is apparent. At seasonal and daily timescales, plumes from individual outlets primarily relate to catchment-specific melting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet
      Available formats
Hide All
Abdalati W and Steffen K (1997) Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J. Climate, 10(2), 165-175
Andersen MLand 14 others (2010) Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. J. Geophys. Res., 115(F4), F04041 (doi: 10.1029/ 2010JF001760)
Bartholomaus TC, Anderson RS and Anderson SP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 33-37 (doi: 10.1038/ngeo.2007.52)
Bartholomew I, Nienow P, Mair D, Hubbard A, King MA and Sole A (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geosci., 3(6), 408-411 (doi: 10.1038/ngeo863)
Bartholomew I and 6 others (2011) Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett., 38(8), L08502 (doi: 10.1029/ 2011GL047063)
Box JE and 8 others (2006) Greenland ice sheet surface mass balance variability (1988-2004) from calibrated polar MM5 output. J. Climate, 19(12), 2783-2800
Carroll ML, Townshend JR, DiMiceli CM, Noojipady P and Sohlberg RA (2009) A new global raster water mask at 250m resolution. Int. J. Digit. Earth, 2(4), 291-308 (doi: 10.1080/ 17538940902951401)
Christoffersen P and 7 others (2011) Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 5(3), 701-714 (doi: 10.5194/tc-5-701-2011)
Chu VW, Smith LC, Rennermalm AK, Forster RR, Box JE and Reeh N (2009) Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol., 55(194), 1072-1082 (doi: 10.3189/ 002214309790794904)
Cowan EA (1992) Meltwater and tidal currents: controls on circulation in a small glacial fjord. Estuar. Coast. Shelf Sci., 34(4), 381-392
Curran PJ, Hansom JD, Plummer SE and Pedley MI (1987) Multispectral remote sensing of nearshore suspended sediments: a pilot study. Int. J. Remote Sens., 8(1), 103-112 (doi: 10.1080/ 01431168708948618)
Ettema J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/ 2009GL038110)
Farmer DM and Freeland HJ (1983) The physical oceanography of Fjords. Progr. Oceanogr., 12(2), 147-219 (doi: 10.1016/0079- 6611(83)90004-6)
Fenn CR(1987) Sediment transfer processes in alpine glacier basins. In Gurnell AM and Clark MJ eds. Glacio-fluvial sediment transfer: an alpine perspective. Wiley, Chichester, 59-85
Fountain AG (1996) Effect of snow and firn hydrology on the physical and chemical characteristics of glacier runoff. Hydrol. Process., 10(4), 509-521
Hallet B, Hunter LE and Bogen J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet. Change, 12(1-4), 213-235
Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K and Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958-2003. J. Geophys. Res., 110(D13), D13108 (doi: 10.1029/2004JD005641)
Hanna E and 8 others (2008) Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. J. Climate, 21(2), 331-341
Hock R (2005) Glacier melt: a review on processes and their modelling. Progr. Phys. Geogr., 29(3), 362-391 (doi: 10.1191/ 0309133305pp453ra)
Hodson AJ, Gurnell AM, Tranter M, Bogen J, Hagen JO and Clarke MJ (1998) Suspended sediment yield and transfer processes in a small High Arctic glacier basin, Svalbard. Hydrol. Process., 12(1), 73-86 (doi: 10.1002/(SICI)1099-1085(199801) 12:1<73::AID-HYP564>3.0.C0;2-S)
Howat IM, Box JE, Ahn Y, Herrington A and McFadden EM (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601-613 (doi: 10.3189/002214310793146232)
Hubbard B and Nienow P (1997) Alpine subglacial hydrology. Quat. Sci. Rev., 16(9), 939-955
Janssens I and Huybrechts P (2000) The treatment of meltwater retardation in mass-balance parameterizations of the Greenland ice sheet. Ann. Glaciol., 31, 133-140 (doi: 10.3189/ 172756400781819941)
Jansson P, Hock R and Schneider T (2003) The concept of glacier storage: a review. J. Hydrol., 282(1-4), 116-129 (doi: 10.1016/ S0022-1694(03)00258-0)
Joughin I, Das SB, King MA, Smith BE, Howat IM and Moon T(2008) Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781-783 (doi: 10.1126/science.1153288)
Lewis SM and Smith LC (2009) Hydrologic drainage of the Greenland Ice Sheet. Hydrol. Process., 23(14), 2004-2011 (doi: 10.1002/hyp.7343)
Liston GE and Elder K (2006) A distributed snow-evolution modeling system (SnowModel). J. Hydromet., 7(6), 1259-1276
Luthi MP (2010) Glaciology: Greenland's glacial basics. Nature, 468(7325), 776-777 (doi: 10.1038/468776a)
McGrath D, Steffen K, Overeem I, Mernild SH, Hasholt B and Van den Broeke M (2010) Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq Fjord, West Greenland. J. Glaciol., 56(199), 813-821 (doi: 10.3189/ 002214310794457227)
Mernild SH and Hasholt B (2009) Observed runoff, jökulhlaups and suspended sediment load from the Greenland ice sheet at Kangerlussuaq, West Greenland, 2007 and 2008. J. Glaciol., 55(193), 855-858 (doi: 10.3189/002214309790152465)
Mernild SH, Liston GE, Hiemstra CA, Steffen K, Hanna E and Christensen JH (2009) Greenland ice sheet surface mass-balance modelling and freshwater flux for 2007, and in a 1995-2007 perspective. Hydrol. Process., 23(17), 2470-2484 (doi: 10.1002/hyp.7354)
Mernild SH, Liston GE, Steffen K, Van den Broeke M and Hasholt B (2010) Runoff and mass-balance simulations from the Greenland Ice Sheet at Kangerlussuaq (Søndre Strømfjord) in a 30-year perspective, 1979-2008. Cryosphere, 4(2), 231-242 (doi: 10.5194/tc-4-231-2010)
Miller RL and McKee BA (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ., 93(1-2), 259-266 (doi: 10.1016/ j.rse.2004.07.012)
Mote TL (2007) Greenland surface melt trends 1973-2007: evidence of a large increase in 2007. Geophys. Res. Lett., 34(22), L22507 (doi: 10.1029/2007GL031976)
Mugford RI and Dowdeswell JA (2011) Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords. J. Geophys. Res., 116(F1), F01023 (doi: 10.1029/2010JF001735)
Murray T and 10 others (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res., 115(F3), F03026 (doi: 10.1029/2009JF001522)
Palmer S, Shepherd A, Nienow P and Joughin I (2011) Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. Earth Planet. Sci. Lett., 302(3-4), 423-428 (doi: 10.1016/ j.epsl.2010.12.037)
Parry V and 6 others (2007) Investigations of meltwater refreezing and density variations in the snowpack and firn within the percolation zone of the Greenland ice sheet. Ann. Glaciol., 46, 61-68 (doi: 10.3189/172756407782871332)
Pfeffer WT, Meier MF and Illangasekare TH (1991) Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res., 96(C12), 22 117-22 124 (doi: 10.1029/91JC02502)
Pritchard HD, Arthern RJ, Vaughan DG and Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971-975 (doi: 10.1038/nature08471)
Rignot E and Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986-990 (doi: 10.1126/science.1121381)
Rignot E, Velicogna I, Van den Broeke MR, Monaghan A and Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5), L05503 (doi: 10.1029/2011GL046583)
Ruhl CA, Schoellhamer DH, Stumpf RP and Lindsay CL (2001) Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California. Estuar. Coast. Shelf Sci., 53(6), 801-812 (doi: 10.1006/ecss.2000.0730)
Shepherd A, Hubbard A, Nienow P, McMillan M and Joughin I (2009) Greenland ice sheet motion coupled with daily melting in late summer. Geophys. Res. Lett., 36(1), L01501 (doi: 10.1029/2008GL035758)
Sole AJ and 6 others (2011) Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology. J. Geophys. Res., 116(F3), F03014 (doi: 10.1029/2010JF001948)
Stott TA and Grove JR (2001) Short-term discharge and suspended sediment fluctuations in the proglacial Skeldal River, N.E. Greenland. Hydrol. Process., 15(3), 407-423
Straneo Fand 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci., 4(5), 322-327 (doi: 10.1038/ngeo1109)
Stumpf RP, Gelfenbaum G and Pennock JR (1993) Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama. Continental Shelf Res., 13(11), 1281-1301
Thomas R, Frederick E, Krabill W, Manizade S and Martin C (2009) Recent changes on Greenland outlet glaciers. J. Glaciol., 55(189), 147-162 (doi: 10.3189/002214309788608958)
Tverberg V, Cushman-Roisin B and Svendsen H(1991) Modeling of internal tides in fjords. J. Mar. Res., 49(4), 635-658 (doi: 10.1357/002224091784995729)
Van de Wal RSW and 6 others (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111-113 (doi: 10.1126/science.1158540)
Van den Broeke M, Smeets P, Ettema J, Van der Veen C, Van de Wal R and Oerlemans J (2008) Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere, 2(2), 179-189 (doi: 10.5194/tc-2-179-2008)
Van den Broeke M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984-986 (doi: 10.1126/science.1178176)
Velicogna I and Wahr J(2006) Acceleration of Greenland ice mass loss in spring 2004. Nature, 443(7109), 329-331 (doi: 10.1038/ nature05168)
Vermote EF, Kotchenova SY and Ray JP (2011) MODIS Surface Reflectance user's guide, version 1.3. MODIS Land Surface Reflectance Science Computing Facility, University of Maryland, College Park, MD (
Wadham JL and Nuttall A-M (2002) Multiphase formation of superimposed ice during a mass-balance year at a maritime high-Arctic glacier. J. Glaciol., 48(163), 545-551 (doi: 10.3189/ 172756502781831025)
Whitney MM and Garvine RW (2005) Wind influence on a coastal buoyant outflow. J. Geophys. Res., 110(C3), C03014 (doi: 10.1029/2003JC002261)
Zwally HJ, Abdalati W, Herring T, Larson K, Saba J and Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218-222 (doi: 10.1126/ science.1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 18 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 22nd January 2018. This data will be updated every 24 hours.