Skip to main content Accessibility help

Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters

  • J.A. Dowdeswell (a1), J. Evans (a1), R. Mugford (a1), G. Griffiths (a2), S. McPhail (a2), N. Millard (a2), P. Stevenson (a2), M.A. Brandon (a3), C. Banks (a3), K.J. Heywood (a4), M.R. Price (a4), P.A. Dodd (a4), A. Jenkins (a5), K.W. Nicholls (a5), D. Hayes (a5), E.P. Abrahamsen (a5), P. Tyler (a6), B. Bett (a6), D. Jones (a6), P. Wadhams (a7) (a8), J.P. Wilkinson (a9), K. Stansfield (a10) and S. Ackley (a11)...


Limitations of access have long restricted exploration and investigation of the cavities beneath ice shelves to a small number of drillholes. Studies of sea-ice underwater morphology are limited largely to scientific utilization of submarines. Remotely operated vehicles, tethered to a mother ship by umbilical cable, have been deployed to investigate tidewater-glacier and ice-shelf margins, but their range is often restricted. The development of free-flying autonomous underwater vehicles (AUVs) with ranges of tens to hundreds of kilometres enables extensive missions to take place beneath sea ice and floating ice shelves. Autosub2 is a 3600 kg, 6.7 m long AUV, with a 1600 m operating depth and range of 400 km, based on the earlier Autosub1 which had a 500 m depth limit. A single direct-drive d.c. motor and five-bladed propeller produce speeds of 1–2 m s−1. Rear-mounted rudder and stern-plane control yaw, pitch and depth. The vehicle has three sections. The front and rear sections are free-flooding, built around aluminium extrusion space-frames covered with glass-fibre reinforced plastic panels. The central section has a set of carbon-fibre reinforced plastic pressure vessels. Four tubes contain batteries powering the vehicle. The other three house vehicle-control systems and sensors. The rear section houses subsystems for navigation, control actuation and propulsion and scientific sensors (e.g. digital camera, upward-looking 300 kHz acoustic Doppler current profiler, 200 kHz multibeam receiver). The front section contains forward-looking collision sensor, emergency abort, the homing systems, Argos satellite data and location transmitters and flashing lights for relocation as well as science sensors (e.g. twin conductivity–temperature–depth instruments, multibeam transmitter, sub-bottom profiler, AquaLab water sampler). Payload restrictions mean that a subset of scientific instruments is actually in place on any given dive. The scientific instruments carried on Autosub are described and examples of observational data collected from each sensor in Arctic or Antarctic waters are given (e.g. of roughness at the underside of floating ice shelves and sea ice).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters
      Available formats



Hide All
Anderson, J.B. 1999. Antarctic marine geology. Cambridge, etc., Cambridge University Press.
Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S. and Mosola, A.B.. 2002. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat. Sci. Rev., 21(1–3), 4970.
Bamber, J.L. and Bentley, C.R.. 1994. A comparison of satellitealtimetry and ice-thickness measurements of the Ross Ice Shelf, Antarctica. Ann. Glaciol., 20, 357364.
Brierley, A.S. and 11 others. 2002. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science, 295(5561), 18901892.
Broecker, W.S. 1991. The great ocean conveyor. Oceanography, 4(2), 7989.
Canals, M., Urgeles, R. and Calafat, A.M.. 2000. Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28(1), 3134.
Cavalieri, D.J., Parkinson, C.L. and Vinnikov, K.Y.. 2003. 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett., 30(18), 1970. (10.1029/2003GL018031.)
Collins, K. and Griffiths, G., eds. 2008. Workshop on AUV science in extreme environments: collaborative Autosub science in extreme environments. Proceedings of the International Science Workship, 11–13 April 2007, Scott Polar Research Institute, University of Cambridge, UK. London, Society for Underwater Technology.
Dodd, P.A., Price, M.R., Heywood, K.J. and Pebody, M.. 2006. Collection of water samples from an autonomous underwater vehicle for tracer analysis. J. Atmos. Oceanic Technol., 23(12), 17591767.
Dowdeswell, J.A. and Bamber, J.L.. 2007. Keel depths of modern Antarctic icebergs and implications for sea-floor scouring in the geological record. Mar. Geol., 243(1–4), 120131.
Dowdeswell, J.A. and Powell, R.D.. 1996. Submersible remotely operated vehicles (ROVs) for investigations of the glacier–ocean–sediment interface. J. Glaciol., 42(140), 176183.
Evans, J., Dowdeswell, J.A., Cofaigh, C. Ó, Benham, T.J. and Anderson, J.B.. 2006. Extent and dynamics of the West Antarctic Ice Sheet on the outer continental shelf of Pine Island Bay during the last glaciation. Mar. Geol., 250(1–2), 5372.
Fahnestock, M.A., Scambos, T.A., Bindschadler, R.A. and Kvaran, G.. 2000. A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica. J. Glaciol., 46(155), 652664.
Francois, R.E. 1977. High resolution observations of under-ice morphology. Seattle, WA, University of Washington. Applied Physics Laboratory. Tech. Rep. APL-UW-7112.
Griffiths, G. and Collins, K., eds. 2007. Masterclass in AUV technology for polar science: collaborative autosub science in extreme environments. Proceedings of the International Master-class, 28–30 March 2006, National Oceanography Centre, Southampton, UK. London, Society for Underwater Technology.
Hayes, D.R. and Jenkins, A.. 2007. Autonomous underwater vehicle measurements of surface wave decay and directional spectra in the marginal sea ice zone. J. Phys. Oceanogr., 37(1), 7183.
Holland, P.R. and Feltham, D.L.. 2006. The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes. J. Phys. Oceanogr., 36(12), 23122327.
Jenkins, A. and Doake, C.S.M.. 1991. Ice–ocean interaction on Ronne Ice Shelf, Antarctica. J. Geophys. Res., 96(C1), 791813.
Liu, A.K., Holt, B. and Vachon, P.W.. 1991. Wave propagation in the marginal ice zone: model predictions and comparisons with buoy and synthetic aperture radar data. J. Geophys. Res., 96(C3), 46054621.
Mayer, C., Reeh, N., Jung-Rothenhäusler, F., Huybrechts, P. and Oerter, H.. 2000. The subglacial cavity and implied dynamics under Nioghalvfjerdsfjorden glacier, NE Greenland. Geophys. Res. Lett., 27(15), 22892292.
McPhail, S.D. and Pebody, M.. 1998. Navigation and control of an autonomous underwater vehicle using a distributed, networked, control architecture. Underwater Technol., 23(1), 1930.
Meylan, M., Squire, V.A. and Fox, C.. 1997. Towards realism in modelling ocean wave behavior in marginal ice zones. J. Geophys. Res., 102(C10), 22,98122,991.
Millard, N.W. and 8 others. 1998. Versatile autonomous submersibles – the realising and testing of a practical vehicle. Underwater Technol., 23(1), 717.
Nicholls, K.W. 1996. Temperature variability beneath Ronne Ice Shelf, Antarctica from thermistor cables. J. Geophys. Res., 101(C1), 11991210.
Nicholls, K.W., Österhus, S., Makinson, K. and Johnson, M.R.. 2001. Oceanographic conditions south of Berkner Island, beneath Filchner–Ronne Ice Shelf, Antarctica. J. Geophys. Res., 106(C6), 11,48111,492.
Nicholls, K.W. and 21 others. 2006. Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle. Geophys. Res. Lett., 33(8), L08162. (10.1029/2006GL025998.)
Ó Cofaigh, C., Pudsey, C.J., Dowdeswell, J.A. and Morris, P.. 2002. Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophys. Res. Lett., 29(8), 1199. (10.1029/2001GL014488.)
Ottesen, D. and Dowdeswell, J.A.. 2006. Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. J. Geophys. Res., 111(F1), F01016. (10.1029/2005JF000330.)
Ottesen, D., Dowdeswell, J.A. and Rise, L.. 2005. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: the 2500-km-long Norwegian-Svalbard margin (57°–80°N). Geol. Soc. Am. Bull., 117(7), 10331050.
Powell, R.D., Dawber, M., McInnes, J.N. and Pyne, A.R.. 1996. Observations of the grounding-line area at a floating glacier terminus. Ann. Glaciol., 22, 217223.
Reves-Sohn, R.A. and 22 others. 2007. Scientific scope and summary of the Arctic Gakkel vents (AGAVE) expedition [Abstract OS41C-07.] Eos, 88(52), Fall Meet. Suppl.
Rignot, E. and Kanagaratnam, P.. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990.
Stevenson, P., Griffiths, G. and Webb, A.T.. 2002. The experience and limitations of using manganese alkaline primary cells in a large operational AUV. In Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles, 20–21 June, San Antonio, Texas. Piscatawey, NJ, Institute of Electrical and Electronics Engineers, 2734.
Stevenson, P. and 7 others. 2003. Engineering an autonomous underwater vehicle for under ice operations. In Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, 8-13 June 2003, Cancun, Mexico. New York, American Society of Mechanical Engineers. CD-ROM.
Strutt, J.E. 2006. Report of the inquiry into the loss of Autosub2 under the Fimbulisen. Southampton, National Oceanography Centre. (Research and Consultancy Report 12.)
Syvitski, J.P.M., Burrell, D.C. and Skei, J.M.. 1987. Fjords: processes and products. New York, Springer-Verlag.
Syvitski, J.P.M., Andrews, J.T. and Dowdeswell, J.A.. 1996. Sediment deposition in an iceberg-dominated glacimarine environment, East Greenland: basin fill implications. Global Planet. Change, 12(1–4), 251270.
Wadhams, P. 1978. Sidescan sonar imagery of sea ice in the Arctic Ocean. Can. J. Remote Sens., 4(2), 161173.
Wadhams, P. 1988. The underside of Arctic sea ice imaged by sidescan sonar. Nature, 333(6169), 161164.
Wadhams, P. 2000. Ice in the ocean. Amsterdam, etc., Gordon and Breach Science Publishers.
Wadhams, P. and Martin, S.. 1990. Processes determining the bottom topography of multiyear arctic sea ice. In Ackley, S.F. and Weeks, W.F., eds. Sea ice properties and processes, Proceedings of the W.F. Weeks Sea Ice Symposium. Hanover, NH, US Army Cold Regions Research and Engineering Laboratory, 136141. (CRREL Monogr. 90-1.)
Wadhams, P., Squire, V.A., Ewing, J.A. and Pascal, R.W.. 1986. The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr., 16(2), 358376.
Wadhams, P., Squire, V.A., Goodman, D.J., Cowan, A.M. and Moore, S.C.. 1988. The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res., 93(C6), 67996818.
Wadhams, P., Wilkinson, J.P. and Kaletzky, A.. 2004. Sidescan sonar imagery of the winter marginal ice zone obtained from an AUV. J. Atmos. Oceanic Technol., 21(9), 14621470.
Wadhams, P., Wilkinson, J.P. and McPhail, S.D.. 2006. A new view of the underside of Arctic sea ice. Geophys. Res. Lett., 33(4), L04501. (10.1029/2005GL025131.)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed