Skip to main content
×
×
Home

Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism

  • Douglas R. MacAyeal (a1), Ted A. Scambos (a2), Christina L. Hulbe (a3) and Mark A. Fahnestock (a4)
Abstract

Two disintegration events leading to the loss of Larsen A and B ice shelves, Antarctic Peninsula, in 1995 and 2002, respectively, proceeded with extreme rapidity (order of several days) and reduced an extensive, seemingly integrated ice shelf to ajumble of small fragments. These events strongly correlate with warming regional climate and accumulation of surface meltwater, supporting a hypothesis that meltwater-induced propagation of pre-existing surface crevasses may have initiated ice-shelf fragmentation.We address here an additional, subsequent mechanism that may sustain and accelerate the ice-shelf break-up once it begins. The proposed mechanism involves the coherent capsize of narrow (less than thickness) ice-shelf fragments by rolling 90° in a direction toward, or away from, the ice front. Fragment capsize liberates gravitational potential energy, forces open ice-shelf rifts and contributes to further fragmentation of the surrounding ice shelf.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism
      Available formats
      ×
Copyright
References
Hide All
Bamber, J. L. and Bindschadler, R. A.. 1997. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Ann. Glaciol., 25, 439444.
Bass, D.W. 1980. Stability of icebergs. Ann. Glaciol., 1, 4347.
Bond, G. and 13 others. 1992. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature, 360(6401), 245249.
Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P. and Young, N.W.. 1998. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature, 391(6669), 778780.
Hughes, T. 1983. On the disintegration of ice shelves: the role of fracture. J. Glaciol., 29(101), 98117.
Hulbe, C. L. 1997. An ice shelf mechanism for Heinrich layer production. Paleoceanography, 12(5), 711717.
Morland, L.W. 1987. Unconfined ice-shelf flow. In Van der Veen, C. J. and Oerlemans, J., eds. Dynamics of the West Antarctic ice sheet. Dordrecht, etc., D. Reidel Publishing Co., 99116.
Nye, J. F. and Potter, J. R.. 1980.The use of catastrophe theory to analyse the stability and toppling of icebergs. Ann. Glaciol., 1, 4954.
Pedlosky, J. 1979. Geophysical fluid dynamics. First edition. New York, Springer-Verlag.
Rack, W., Doake, C. S. M., Rott, H., Siegel, A. and Skvarca, P.. 2000. Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurements and numerical modeling. Ann. Glaciol., 31, 205210.
Rott, H., Skvarca, P. and Nagler, T.. 1996. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271(5250), 788792.
Rott, H., Rack, W., Nagler, T. and Skvarca, P.. 1998. Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. Ann. Glaciol., 27, 8692.
Scambos, T. A., Hulbe, C., Fahnestock, M. and Bohlander, J.. 2000. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516530.
Scambos, T. A., Hulbe, C. and Fahnestock, M. A.. In press. Climate-induced ice shelf disintegration in Antarctica. In Domack, E., Burneet, A., Conley, P., Kirby, M. and Bindschadler, R. A., eds. Antarctic Peninsula climate variability: a historical and paleoenvironmental perspective. Washington, DC, American Geophysical Union. (Antarctic Research Series.)
Skvarca, P., Rack, W., Rott, H. and Ibarzábal y Donángelo, T.. 1998. Evidence of recent climatic warming on the eastern Antarctic Peninsula. Ann. Glaciol., 27, 628632.
Thomas, R. H. 1973.The creep of ice shelves: theory. J. Glaciol., 12(64), 4553.
Van derVeen, C. J. 1998. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci.Technol., 27(1), 3147.
Vaughan, D. G. and Doake, C. S. M.. 1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379(6563), 328331.
Weertman, J. 1957. Deformation of floating ice shelves. J. Glaciol., 3(21), 3842.
Weertman, J. 1973. Can a water-filled crevasse reach the bottom surface of a glacier? International Association of Scientific Hydrology Publication 95 (Symposium at Cambridge 1969 — Hydrology of Glaciers), 139145.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed