Skip to main content
×
×
Home

A century of geometry and velocity evolution at Eqip Sermia, West Greenland

  • MARTIN P. LÜTHI (a1), ANDREAS VIELI (a1), LUC MOREAU (a2), IAN JOUGHIN (a3), MORITZ REISSER (a1), DAVID SMALL (a1) and MANFRED STOBER (a4)...
Abstract

Rapid dynamic changes of ocean-terminating outlet glaciers of the Greenland ice sheet are related to atmospheric and oceanic warming but the detailed link to external forcing is not well understood. Observations show high variability in dynamic changes and are mainly limited to the past three decades with dense satellite observations. Here we compile a long-term record of dynamic changes of Eqip Sermia Glacier, West Greenland. Starting in 1912, we combine historical measurements of terminus positions, ice-surface elevation and flow velocity together with more recent in-situ and remote-sensing observations. In the 20th century, the glacier underwent small variations in terminus position and flow speed. Between 2000 and 2003, the terminus retreated substantially, but stabilized thereafter. In 2009, the northern terminus lobe started to retreat very rapidly; the southern lobe collapsed in 2013. The present terminus position, which has retreated by 4 km since 1920, is unprecedented in the historical record. Flow velocities were relatively stable until 2010. The recent acceleration reached threefold velocities in 2014 and rapidly affected the whole terminus region up to 15 km inland. Comparison with forcings from the atmosphere and the ocean over the past century shows that no dominant cause can be identified, and that local effects of bed geometry modulate the glacier response.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A century of geometry and velocity evolution at Eqip Sermia, West Greenland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A century of geometry and velocity evolution at Eqip Sermia, West Greenland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A century of geometry and velocity evolution at Eqip Sermia, West Greenland
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Martin P. Lüthi <martin.luethi@geo.uzh.ch>
References
Hide All
Amundson, J and 5 others (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res, 115, F01005 (doi: 10.1029/2009JF001405)
Andresen, CS and 9 others (2012) Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nat. Geosci., 5, 3741 (doi: 10.1038/NGEO1349)
Andrews, LC and 7 others (2014) Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature, 514 (doi: 10.1038/nature13796)
Bassis, JN and Walker, CC (2012) Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. London A: Math. Phys. Eng. Sci., 468(2140), 913931, ISSN 1364-5021 (doi: 10.1098/rspa.2011.0422)
Bauer, A (1953) Frontverschiebungen des Gletschers Eqip Sermia, West-Grönland 1912–1953. Polarforschung, 23(1/2), 234235, hdl:10013/epic.29116.d001
Bauer, A (1955) Glaciologie Groenland II. le glacier de l'Eqe. 6. Technical Report. Expéditions Polaires Francaises, Paris, Hermann, 118 pp
Bauer, A (1968a) Le glacier de l'Eqe (Eqip Sermia). Mouvement et variations du front (1959). Technical Report 2. Expédition glaciologique internationale au Groenland (EGIG), Købnhavn, Reitzel, Meddelelser om Grønland
Bauer, A (1968b) Missions aériennes de reconnaissance au Groenland 1957–1958. Technical Report 1. Expedition glaciologique internationale au Groenland (EGIG)
Beaird, N, Straneo, F and Jenkins, W (2015) Noble gases trace Greenland's surface and submarine melt in the ocean. Geophys. Res. Lett., 26 (doi: 10.1002/2015GL065003)
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82, 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Bjørk, AA and 8 others (2012) An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci., 5, 427432 (doi: 10.1038/NGEO1481)
Box, JE (2013) Greenland ice sheet mass balance reconstruction. Part II: surface mass balance (1840–2010). J. Clim., 26, 69746989 (doi: 10.1175/JCLI-D-12-00518.1)
Box, JE and 10 others (2013) Greenland ice sheet mass balance reconstruction. Part I: net snow accumulation (1600–2009). J. Clim. (doi: 10.1175/JCLI-D-12-00373.1)
Caduff, R, Schlunegger, F, Kos, A and Wiesmann, A (2014) A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf. Proc. Landforms, 40(2) (doi: 10.1002/esp.3656)
Cappelen, J (2014) Technical report 14-04: Greenland – DMI Historical Climate Data Collection 1784–2013. Technical Report. Danish Meteorological Institute, Copenhagen
Carbonnell, M and Bauer, A (1968) Exploitation des couvertures photographiques aériennes répétées du front des glaciers vêlants dans Disko Bugt et Umanak Fjord, Juin-Juillet 1964. Technical Report 3. Expedition glaciologique internationale au Groenland (EGIG), tirage à part des Meddelelser om Grønland, Bd. 173, Nr. 5
Carr, J, Stokes, C and Vieli, A (2013) Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: twenty years of rapid change. Prog. Phys. Geog., 37(4) (doi: 10.1177/0309133313483163)
Csatho, B, Schenk, T, van der Veen, CJ and Krabill, WB (2008) Intermittent thinning of Jakobshavn Isbrae, West Greenland, since Little Ice Age. J. Glaciol., 54(184), 131144 (doi: 10.3189/002214308784409035)
de Quervain, A and Mercanton, PL (1925) Résultats scientifiques de l'expédition suisse au Greonland 1912–1913. Bianco Lunos Bogtrykkeri, tirage à part de “Meddelelser om Grønland LIX”
Fried, M and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42 (doi: 10.1002/2015GL065806)
Gogineni, P (2012) CReSIS Greenland radar data, Lawrence, Kansas, USA. Digital Media. http://data.cresis.ku.edu/.
Hanson, B and Hooke, RL (2000) Glacier calving: a numerical model of forces in the calving-speed/water-depth relation. J. Glaciol., 46(153), 188196 (doi: 10.3189/172756500781832792)
Holland, DM, Thomas, RH, de Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664 (doi: 10.1038/ngeo316)
Holtzscherer, J and Bauer, A (1954) Contribution à la connaissance de l'inlandsis du Groenland. Technical Report. Expeditions polaires francaises, Paris
Howat, I, Negrete, A and Smith, B (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets. Cryosphere, 8, 126 (doi: 10.5194/tc-8-1509-2014)
Howat, IM and Eddy, A (2011) Multi-decadal retreat of Greenland's marine-terminating glaciers. J. Glaciol., 57(203) (doi: 10.3189/002214311796905631)
Howat, IM, Joughin, I and Scambos, TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 15591561 (doi: 10.1126/science.1138478)
Howat, IM, Box, JE, Ahn, Y, Herrington, A and McFadden, EM (2010) Seasonal variability in the dynamics of marine terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Report. WMO/UNEP, authors: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley
Joughin, I and 5 others (2008a) Seasonal speedup along the Western flank of the Greenland Ice Sheet. Science, 320, 781783 (doi: 10.1126/science.1153288)
Joughin, I and 7 others (2008b) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res., 113, F04006 (doi: 10.1029/2008JF001023)
Joughin, I, Smith, B, Howat, I, Scambos, T and Moon, T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56, 415430 (doi: 10.3189/002214310792447734)
Kadded, F and Moreau, L (2013) Sur les traces de Paul-Emile Victor, relevés topographiques 3d au Groenland. Revue XYZ, 137(4), 4756
Kjær, KH and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in Northwestern Greenland. Science, 337 (doi: 10.1126/science.1220614)
Korona, J, Berthier, E, Bernard, M, Rémy, F and Thouvenot, E (2009) SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth International Polar Year (2007- 2009). ISPRS J. Photogramm. Remote Sens., 64, 204212 (doi: 10.1016/j.isprsjprs.2008.10.005)
Lea, JM and 7 others (2014) Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present. Cryosphere, 8, 20312045 (doi: 10.5194/tc-8-2031-2014)
Leysinger–Vieli, GJMC and Gudmundsson, GH (2004) On estimating length fluctuations of glaciers caused by changes in climatic forcing. J. Geophys. Res., 109(F1) (doi: 10.1029/2003JF000027)
Lloyd, J and 6 others (2011) A 100-year record of ocean temperature control on the stability of Jakobshavn Isbrae, West Greenland. Geology, 39(9), 867870 (doi: 10.1130/G32076.1)
Lüthi, MP and Vieli, A (2015) Multi-method observation and analysis of an impulse wave and tsunami caused by glacier calving. Cyrosphere Discuss., 9, 64716493 (doi: 10.5194/tcd-9-6471-2015)
Moon, T and Joughin, I (2008) Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. JGR, 113(F02022) (doi: 10.1029/2007JF000927)
Moon, T, Joughin, I, Smith, B and Howat, I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336, 576578 (doi: 10.1126/science.1219985)
Moon, T and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 72097216 (doi: 10.1002/2014GL061836)
Nick, F and 8 others (2013) Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature, 479 (doi: 10.1038/nature12068)
Nielsen, N (1991) A boulder beach formed by waves from a calving glacier; Eqip Sermia, West Greenland. Boreas, 21, 159168
Pfeffer, T (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F03S25) (doi: 10.1029/2006JF000590)
Pollard, D, DeConto, RM and Alley, RB (2015) Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett., 412, 112121 (doi: 10.1016/j.epsl.2014.12.035)
Rayner, NA and 7 others (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407 (doi: 10.1029/2002JD002670)
Ribergaard, MH (2014) Oceanographic investigations off West Greenland 2013. Technical Report. Danish Meteorological Institute Centre for Ocean and Ice
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986990 (doi: 10.1126/science.1121381)
Rignot, E, Koppes, M and Velicogna, I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3, 187191 (doi: 10.1038/NGEO765)
Rignot, E, Fenty, I, Xu, Y, Cai, C and Kemp, C (2015) Undercutting of marine-terminating glaciers in West Greenland. Geophys. Res. Lett., 42, 59095917 (doi: 10.1002/2015GL064236)
Ryser, C and 7 others (2014a) Caterpillar-like ice motion in the ablation zone of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf., 119, 22582271 (doi: 10.1002/2013JF003067)
Ryser, C and 7 others (2014b) Sustained high basal motion of the Greenland Ice Sheet revealed by borehole deformation. J. Glaciol., 60(222), 647660 (doi: 10.3189/2014JoG13J196)
Schubert, A, Small, D, Miranda, N, Geudtner, D and Meier, E (2015) Sentinel-1A product geolocation accuracy: commissioning phase results. Remote Sens., 7(7), 94319449 (doi: 10.3390/rs70709431)
Schwalbe, E (2013) Entwicklung von Verfahren zur Bestimmung räumlich-zeitlich hochaufgelöster Bewegungsvektorfelder an Gletschern aus monoskopischen Bildsequenzen. (PhD thesis, Technische Universität Dresden), Dresden
Shepherd, A and 45 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Sohn, HG, Jezek, KC and Van der Veen, CJ (1998) Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations. J. Geophys. Res., 25(14), 26992702 (doi: 10.1029/98GL01973)
Stober, M (2010) New results from Swiss-Camp project and from Eqip Sermia glacier. In IASC Workshop on the Dynamics and Mass Budget of Arctic Glaciers
Straneo, F and Heimbach, P (2013) North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504, 3643 (doi: 10.1038/nature12854)
Straneo, F and 15 others (2013) Challenges to understand the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Meteorol. Soc., 94(8) (doi: 10.1175/BAMS-D-12-00100.0)
Strozzi, T, Werner, C, Wiesmann, A and Wegmüller, U (2012) Topography mapping with a portable real-aperture radar interferometer. Geosci. Remote Sens. Lett., 9(2), 277281 (doi: 10.1109/LGRS.2011.2166751)
Torres, R and 6 others (2012) GMES Sentinel-1 mission. Remote Sens. Environ., 120, 924 (doi: 10.1016/j.rse.2011.05.028)
van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326, 984986 (doi: 10.1126/science.1178176)
Van der Veen, CJ (1996) Tidewater calving. J. Glaciol., 42(141), 375385
Vieli, A and Nick, F (2011) Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32(4) (doi: 10.1007/s10712-011-9132-4)
Voytenko, D and 7 others (2015) Multi-year observations of Breidamerkurjökull, a marine-terminating glacier in southeastern iceland, using terrestrial radar interferometry. J. Glaciol., 61(225), 4254 (doi: 10.3189/2015JoG14J099)
Warren, CR and Glasser, NF (1992) Contrasting response of South Greenland glaciers to recent climatic change. Arct. Alp. Res., 24(2), 124132
Weidick, A and Bennike, O (2007) Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review. Technical Report 14. Geological Survey of Denmark and Greenland Bulletin, ISBN 978-87-7871-207-3
Zick, W (1972) Eisbewegungen am Eqip Sermia und im westlichen Randgebiet des grönländischen Inlandeises (EGIG Arbeitsgebiet). Polarforschung, 42(1), 2430, hdl:10013/epic.29364.d001
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed