Skip to main content
×
×
Home

Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates

  • R. B. Alley (a1), R. C. Finkel (a2), K. Nishiizumi (a3), S. Anandakrishnan (a4), C. A. Shuman (a4), G. Mershon (a5), G. A. Zielinski (a5) and P. A. Mayewski (a5)...
Abstract

By fitting a very simple atmospheric impurity model to high-resolution data on ice accumulation and contaminant fluxes in the GISP2 ice core, we have estimated changes in the atmospheric concentrations of soluble major ions, insoluble particulates and 10Be during the transition from glacial to Holocene conditions. For many species, changes in concentration in the ice typically overestimate atmospheric changes, and changes in flux to the ice typically underestimate atmospheric changes, because times of increased atmospheric contaminant loading are also times of reduced snowfall. The model interpolates between the flux and concentration records by explicitly allowing for wet- and dry-deposition processes. Compared to the warm Preboreal that followed, we estimate that the atmosphere over Greenland sampled by snow accumulated during the Younger Dryas cold event contained on average four–seven times the insoluble particulates and nearly seven times the soluble calcium derived from continental sources, and about three times the sea salt but only slightly more cosmogenic 10Be.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates
      Available formats
      ×
Copyright
References
Hide All
Alley, R. B. and Anandakrishnan, S. 1995. Variations in melt-layer frequency in the GISP2 ice corD: implications for Holocene summer temperatures in central Greenland. Ann. glaciol., 21, 6470.
Alley, R. B. and 10 others. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362 (6420), 527529.
Alley, R. B., Gow, A. J., Johnsen, S.J., Kipfstuhl, J., Meese, D. A. and Thorsteinsson, T., 1995. Comparison of deep ice cores. Nature, 373 (6513), 393394.
Beer, J., Andree, M., Oeschger, H. and Stauffer, B. 1983. Temporal 10Be variations in ice. Radiocarbon, 25, 269278.
Beer, J. and 12 other. 1990. Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature, 347 (6289), 164166.
Bergin, M. H., Jaffrezo, J.-L. Davidson, C. I., Caldow, R. and Dibb, J. 1994. Fluxes of chemical species to the Greenland ice sheet at Summit by fog and dry deposition. Geochim. Cosmochim. Acta, (15), 32073215.
Bolzan, J.F., Waddington, E.D., Alley, R. B. and D.A Meese. 1995. Constraints on Holocene ice-thickness changes in central Greenland from the GISP2 ice-core data. Ann. Glaciol., 21 3339.
Clausen, Η. Β. and Langway, C. C. Jr., 1989. The ionic deposits in polar ice cores. In Oeschger, H. and Langway, C. C.Jr.,, eds. The environmental record in glaciers and ice sheets. Chichester, etc., John Wiley and Sons. 225247.
Cuffey, K. M., Alley, R. B., Grootes, P. M. and Anandakrishnan, S. 1992. Toward using borehole temperatures to calibrate an isotopic paleothermometer in central Greenland. Palaeogeogr., Palaeoclimatol., Palaeoecol., 98 (24), 265268.
Cuffey, K. M., Alley, R. B., Grootes, P. M., Bolzan, J. F. and Anandakrishnan, S. 1994. Calibration of the δ18O isotopic paleothermometer for central Greenland, using borehole temperatures. J. Glaciol., 40 (135), 341349.
Cunningham, J. and Waddington, E. D. 1993. Air flow and dry deposition of non-sea salt sulfate in polar firo; paleoclimatic implications. Almos. Environ., Ser. A, 27 (1718), 29432956.
Cutler, N. A., Raymond, C. F., Waddington, E.D., Meese, D. A. and Alley, R. B. 1995. The effect of ice-sheet thickness change on the accumulation history inferred GISP2 layer thickness. Ann. Glaciol., 21, 2632.
Davidson, C. I. 1989. Mechanisms of wet and dry deposition of atmospheric contaminants to snow surfaces. In Oeschger, H. and Langway, C. C. Jr, eds. The environmental record in glaciers and sheets. Chichester, etc., John Wiley and Sons, 2951.
Davidson, C. I., Santhanam, S., Fortmann, R. C. and Olson, M. P. 1985. Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos, Environ., 19 (12), 20652081.
Davis, J. C. and 10 others. 1990. LLNL/UC AMS facility and research program. Nucl. Instrum. Methods, Ser. Β, 52, 269272.
Delmas, R. and Legrand, M. 1989. Long-term changes in the concentrations of major chemical compounds (soluble and insoluble) along deep ice cores. In Oeschger, H. and Langway, C. C. Jr.,, eds. The environmental record in glaciers and ice sheets. Chichester, etc., John Wiley and Sons, 319341.
Dibb, J. E., Jaffrezo, J.-L. and Legrand, M. 1992. Initial findings of recent investigations of air-snow relationships in the Summit region of the Greenland ice sheet. J. Atmos. Chem., 14 (14). 167180.
Dibb, J. E., Talbot, R. W. and Bergin, M. H., 1994. Soluble acidic species in air and snow at Summit, Greenland. Geophys. Res, Lett., 21 (15), 16271630.
Harvey, L. D. D. 1988. Climatic impact of ice-age aerosols. Nature, 334 (6180), 333335.
Herron, M. M. and Langway, C. C. Jr., 1985, Chloride, nitrate, and sulfate in the Dye 3 and Camp Century, Greenland ice cores. In Langway, C. C., Jr., Oeschger, H. and Dansgaard, W., eds. Greenland ice corD: geophysics, geochemistry, and the environment. Washington, DC, American Geophysical Union, 7784. (Geophysical Monograph 33.)
Hillamo, R. E., Kerminen, V.-M., Maenhaut, W., Jaffrezo, J.-L. Balachandran, S. and Davidson, C. I. 1993. Size distributions of atmospheric trace elements at Dye 3, Greenland. I. Distribution characteristics and dry deposition velocities. Atmos. Environ., Ser. A. 27(1718), 27872802.
Hodge, S. M., Wright, D.L., Bradley, J.A. Jacobel, R. W., Skou, N. and Vaughn, Β. 1990. Determination of the surface and bed topography in central Greenland. J. Glacial., 36 (122), 1730.
Jaffrezo, J.-L., Hillamo, R. E., Davidson, C. I. and Maenhaut, W. 1993. Size distributions of atmospheric trace elements at Dye 3, Greenland. 2. Sources and transport. Atmos. Environ., Ser. A, 27 (1718), 28032814.
Johnsen, S. J. and 9 others. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359 (6393), 311313.
Joussaume, S. 1993. Paleoclitnatic tracers: an investigation using an atmospheric general circulation model under ice age conditions. 1. Desert dust. J. Geophys. Res., 98 (D2), 27672805.
Kutzbach, J. E. and Guetter, P. J. 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J. Atmos. Sci., 43 (16), 17261759.
Lal, D. 1992. Expected secular variations in the global terrestrial production rate of radiocarbon. In Bard, E. and Broecker, W. S., eds The last deglaciation: absolute and radiocarbon chronologies. Berlin, Springer-Verlag, 113126. (NATO ASI Series. Series I: Global Environmental Change, Val. 2.)
Lal, D. and Peters, B. 1967. Cosmic ray produced radioactivity on the Earth. In Handbuch der Physik. Vol. XLVI/2. New York, Springer-Verlag, 551612.
Lautenschlager, M. and Herterich, K., 1990. Atmospheric response to ice age conditions: climatology near the Earth’s surface, J. Geophys. Res., 95 (D13), 22,54722,557.
Legrand, M. 1987. Chemistry of Antarctic snow and ice. J. Phys. (Paris), 48, Colloq. C1, 7786. (Supplément au 3.)
Legrand, M., Angelis, M, De Staffelbach, T., Neftel, A. and Stauffer, B. 1992. Large perturbations of ammonium and organic acids content in the Summit-Greenland ice core. Fingerprint from forest fires? Geophys. Res. Lett., 19 (5), 473475.
McHargue, L. R. and Damon, P. E. 1991. The global beryllium 10 cycle. Rev. Geophys., 29 (2), 141158.
Mayewski, P. Α., Spencer, M. J., Twickler, M.S. and Whitlow, S. 1990. A gtaciochemical survey of the Summit region, Greenland. Ann. Glacial., 14, 186190.
Mayewski, P. A. and 7 others. 1993a. The atmosphere during the Younger Dryas. Science, 261 (5118), 195197.
Mayewski, P.A. and 8 others. 1993b. Greenland ice core “signal” characteristics: an expanded view of climate change. J. Geophys. Res., 98 (D7), 12,83912,848.
Mazaud,, A., Laj, C., Bard, E., Arnold, M. and Trie, E. 1992. A geomagnetic calibration of the radiocarbon time-scale. In Bard, E. and Broecker, W. S., eds. The last deglaciation: absolute and radiocarbon chronologies. Berlin, Springer-Verlag, 163169. (NATO ASI Series. Series I: Global Environmental Change, Vol. 2.)
Mershon, G. R. and Zielinski, G. A. 1993, Abrupt changes in insoluble micropartiele deposition across the Younger Dryas transitions. EOS, 74 (16), Supplement, 93.
Peel, D. A., Mulvaney, R. and Davison, B. M. 1988. Stable-isotope/air-temperature relationships in ice cores from Dolleman Island and the Palmer Land plateau, Antarctic Peninsula. Ann. Glaciol., 10, 130136.
Petit, J. -B., Briat, M. and Royer, A. 1981. Ice age aerosol content From East Antarctic ice core samples and past wind strength, Nature, 293 (5831), 391394.
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. 1988. Numerical recipes in C; the art of scientific computing. Cambridge, etc., Cambridge University Press.
Raisbeck, G. M., Yiou, F., Bourles, D., Lorias, C., Jouzel, J. and Barkovn, I. 1987. Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature, 326 (6110), 273277.
Raisbeck, G. M., Yiou, F., Jouzel, J., Petit, J. R., Barkov, N. I. and Bard, E. 1992. 10Be deposition at Vostok, Antarctica during the last 50,000 years and its relationship to possible cosmogenic production variations during this period. In Bard, E. and Broecker, W. S., eds. The last deglaciation: absolute and radiocarbon chronologies. Berlin, Springer-Verlag, 127139. (NATO ASI Series. Series I: Global Environmental Change, Vol. 2.)
Rind, D., Peteet, D., Broecker, W., Mclntyre, A. and Ruddiman, W. 1986. The impact of cold North Atlantic sea surface temperatures on climat: implications for the Younger Dryas cooling (11–10k). Climate Dyn., 1 (1), 333.
Sehøtt, C., Waddington, E. D. and Raymond, C. F. 1992. Predicted time-scales for GISP2 and GRIP boreholes at Summit, Greenland. J. Glaciol., 38 (128), 162168.
Schumann, T. 1991. Aerosol and hydrometeor concentrations and their chemical composition during winter precipitation along a mountain slope. III. Size-differentiated in-cloud scavenging efficiencies. Atmos. Environ., Ser. A, 23 (34), 809824.
Taylor, K. and 6 others. 1992. Ice-core dating and chemistry by direct-current electrical conductivity. J. Glaciol., 38 (130), 325332.
Taylor, K. C. and 9 others, 1993a. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366 (6455), 549552.
Taylor, K.C. and 7 others. 1993b. The “flickering switeh” of Late Pleistocene climate change. Nature, 361 (6411), 432436.
Thompson, L. G. 1977. Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station, Antarctica, deep ice corer. International Association of Hydrological Sciences Publication 118. (Symposium at Grenoble 1975—Isotopes and Impurities in Snow and Ice), 351364.
Thompson, L. G., Davis, M. E. Mosley-Thpmpson, E. and Liu, K-b. 1988. Pre-Incan agricultural activity recorded in dust layers in two tropical ice corer. Nature, 336 (6201), 763765.
Till, R. 1974. Statistical methods for the earth scientist: an Introduction. London, etc., Macmillan.
Wanneck, P. 1988. Chemhtiy of the natural atmosphere. Orlando, FL, etc., Academic Press.
Whung, P.-Y., Saltzman, E.S., Spencer, M.J., Mayewski, P.A. and Gundestrup, N. 1994. Two-hundred-year record of biogenic sulfur in a south Greenland ice core (20D). J. Geophys. Res., 99 (D1), 11471156.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed