Skip to main content Accessibility help

Characterizing englacial drainage in the ablation zone of the Greenland ice sheet

  • Ginny A. Catania (a1), Thomas A. Neumann (a2) and Stephen F. Price (a3)

Rapid, local drainage of surface meltwater to the base of the Greenland ice sheet is thought to result in surface velocity variations as far inland as the equilibrium zone (Zwally and others, 2002). Ice-penetrating radar surveys throughout this region allow us to characterize englacial drainage features that appear as vertically stacked diffraction hyperbolae in common-offset profiles. These data are used with a radar-simulation model, which allows for variations in geometry, penetration depth and infill material, to understand the characteristics of these hyperbolae and the likelihood that they are produced by moulins. We find only a moderate correlation between the locations of these possible moulins and supraglacial lakes, indicating that many lakes drain over the surface of the ice sheet, or do not contain sufficient water to reach the bed through moulin formation. We find a strong correlation between moulin location in the ablation region and elevated along-flow tension (due to flow over rough bedrock), which generates surface crevassing and provides an entry point for meltwater. Although theory suggests that moulins may form anywhere on the ice sheet given sufficient meltwater input, our data suggest that they are far more common in the ablation zone than near, or inland from, the equilibrium line.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characterizing englacial drainage in the ablation zone of the Greenland ice sheet
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characterizing englacial drainage in the ablation zone of the Greenland ice sheet
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characterizing englacial drainage in the ablation zone of the Greenland ice sheet
      Available formats
Hide All
Adams, R.J., Perger, W.F., Rose, W.I. and Kostinski, A.. 1996. Measurements of the complex dielectric constant of volcanic ash from 4 to 19GHz. J. Geophys. Res., 101(B4), 81758185.
Alley, R.B., Dupont, T.K., Parizek, B.R. and Anandakrishnan, S.. 2005. Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann. Glaciol., 40, 814.
Andreasen, J.O. 1985. Seasonal surface-velocity variations on a subpolar glacier in West Greenland. J. Glaciol., 31(109), 319323.
Arcone, S.A. and Yankielun, N.E.. 2000. 1.4GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, USA. J. Glaciol., 154(46), 477491.
Bamber, J.L., Ekholm, S. and Krabill, W.B.. 2001. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res., 106(B4), 67336745.
Bingham, R.G., Nienow, P.W., Sharp, M.J. and Boon, S.. 2005. Sub-glacial drainage processes at a High Arctic polythermal valley glacier. J. Glaciol., 51(172), 1524.
Bingham, R.G., Hubbard, A.L., Nienow, P.W. and Sharp, M.J.. 2008. An investigation into the mechanisms controlling seasonal speedup events at a High Arctic glacier. J. Geophys. Res., 113(F2), F02006. (10.1029/2007JF000832.)
Boon, S. and Sharp, M.. 2003. The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier. Geophys. Res. Lett., 30(18), 1916. (10.1029/2003GL018034.).
Box, J.E. and Ski, K.. 2007. Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol., 53(181), 257265.
Buchardt, S. and Dahl-Jensen, D.. 2007. Estimating the basal melt rate at NorthGRIP using a Monte Carlo technique. Ann. Glaciol., 45, 137142.
Catania, G.A., Conway, H., Raymond, C.F. and Scambos, T.A.. 2006. Evidence for floatation or near floatation in the mouth of Kamb Ice Stream, West Antarctica, prior to stagnation. J. Geophys. Res., 111(F1), F01005. (10.1029/2005JF000355.)
Chen, J.L., Wilson, C.R. and Tapley, B.D.. 2006. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795), 19581960.
Das, S.B. and 6 others. 2008. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. and Gogineni, P.. 2001. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294(5550), 23382342.
Fountain, A.G., Jacobel, R.W., Schlichting, R. and Jansson, P.. 2005. Fractures as the main pathways of water flow in temperate glaciers. Nature, 433(7026), 618621.
Giannopoulos, A. 2005. Modelling ground penetrating radar by GprMax. Constr. Build. Mater., 19(101), 755762.
Griffiths, D.J. 1999. Introduction to electrodynamics. Third edition. Upper Saddle River, NJ, Prentice-Hall.
Hobbs, P.V. 1974. Ice physics. Oxford, etc., Clarendon Press.
Holmlund, P. 1988. Internal geometry and evolution of moulins, Storglaciären, Sweden. J. Glaciol., 34(117), 242248.
Joughin, I., Abdalati, W. and Fahnestock, M.A.. 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier, Nature, 432(7017), 608610.
Joughin, I., Das, S., Howat, I. and Moon, T.. 2006. Seasonal behavior of lakes on the surface of the Greenland Ice Sheet. [Abstract C54A-04.] Eos, 87(52), Fall Meet. Suppl.
Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M. and Moon, T.. 2008. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783.
Krabill, W. and 8 others. 1999. Rapid thinning of parts of the southern Greenland ice sheet. Science(5407), 283(5407), 15221524.
Krabill, W. and 9 others. 2000. Greenland Ice Sheet: high-elevation balance and peripheral thinning. Science, 289(5478), 428430.
Krabill, W. and 12 others. 2004. Greenland Ice Sheet: increased coastal thinning. Geophys. Res. Lett., 31(24), L24402. (10.1029/2004GL021533.)
McMillan, M., Nienow, P., Shepherd, A., Benham, T. and Sole, A.. 2007. Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet. Earth Planet. Sci. Lett., 262(3–4), 484492.
Miners, W.D., Wolff, E.W., Moore, J.C., Jacobel, R. and Hempel, L.. 2002. Modelling the radio echo reflections inside the ice sheet at Summit, Greenland. J. Geophys. Res., 107(B8), 2172. (10.1019/2001JB000535.)
Mote, T.L. 2007. Greenland surface melt trends 1973–2007: evidence of a large increase in 2007. Geophys. Res. Lett., 34(22), L22507. (10.1029/2007GL031976.)
Murray, T., Stuart, G.W., Fry, M., Gamble, N.H. and Crabtree, M.D.. 2000. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. J. Glaciol., 46(154), 389399.
Nath, P.C. and Vaughan, D.G.. 2003. Subsurface crevasse formation in glaciers and ice sheets. J. Geophys. Res., 108(B1), 2020. (10.1029/2001JB000453.)
Neumann, T.A., Conway, H., Waddington, E., Catania, G.A. and Morse, D.L.. 2008. Holocene accumulation and ice sheet dynamics in central West Antarctica. J. Geophys. Res., 113(F2), F02018. (10.1029/2007JF000764.)
Parizek, B.R. and Alley, R.B.. 2004. Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quat. Sci. Rev., 23(9–10), 10131027.
Price, S.F., Waddington, E.D. and Conway, H.. 2007. A full-stress, thermomechanical flow band model using the finite volume method. J. Geophys. Res., 112(F3), F03020. (10.1029/2006JF000724.)
Price, S.F., Payne, A.J., Catania, G.A. and Neumann, T.A.. 2008. Seasonal acceleration of inland ice via longitudinal coupling to marginal ice. J. Glaciol., 54(185), 213219.
Raymond, C.F., Catania, G.A., Nereson, N. and van der Veen, C.J.. 2006. Bed radar reflectivity across the north margin of Whillans Ice Stream, West Antarctica, and implications for margin processes. J. Glaciol., 52(176), 310.
Reynaud, L. 1987. Correspondence. The November 1986 survey of the Grand Moulin on the Mer de Glace, Mont Blanc Massif, France. J. Glaciol., 33(113), 130131.
Rignot, E. and Kanagaratnam, P.. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990.
Rumrill, J.A., Neumann, T.A. and Catania, G.A.. 2006. Assessing the spatial and temporal extent of velocity variations near Swiss Camp, Greenland. [Abstract C11A-1136.] Eos, 87(52), Fall Meet. Suppl.
Schroeder, J. 1998. Hans glacier moulins observed from 1988 to 1992, Svalbard. Nor. Geogr. Tidsskr., 52(2), 7988.
Steffen, K. and Box, J.. 2001. Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106(D24), 33,95133,964.
Stuart, G., Murray, T., Gamble, N., Hayes, K. and Hodson, A.. 2003. Characterization of englacial channels by ground-penetrating radar: an example from austre Brøggerbreen, Svalbard. J. Geophys. Res., 108(B11) 2525. (10.1029/2003JB002435.)
Thomsen, H.H., Olesen, O.B., Braithwaite, R.J. and Bøggild, C.E.. 1991. Ice drilling and mass balance at Pâkitsoq, Jakobshavn, central West Greenland. Grønl. Geol. Unders Rapp. 152, 5053.
Van der Veen, C.J. 2007. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett., 34(1), L01501. (10.1029/2006GL028385.)
Vatne, G. 2001. Geometry of englacial water conduits, Austre Brøggerbreen, Svalbard. Nor. Geogr. Tidsskr., 55(2), 8593.
Walford, M.E.R., Kennett, M.I. and Holmlund, P.. 1986. Interpretation of radio echoes from Storglaciären, northern Sweden. J. Glaciol., 32(110), 3949.
Yilmaz, Ö. 1994. Seismic data processing. Third edition. Tulsa, OK, Society of Exploration Geophysicists.
Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. and Steffen, K.. 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222.
Zwally, H.J. and 7 others. 2005. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509527.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed