Skip to main content Accessibility help

Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard



In this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009–2014, we are able to close the glacier mass budget within the prescribed errors. During these 5 years, the glacier geodetic mass balance was −0.69 ± 0.12 m w.e. a−1, while the mass budget method led to a total mass balance of −0.92 ± 0.16 m w.e. a−1, as a consequence of a strong frontal ablation (−0.78 ± 0.11 m w.e. a−1), and a slightly negative climatic mass balance (−0.14 ± 0.11 m w.e. a−1). The trend towards more negative climatic mass balance between 1966–1990 (+0.20 ± 0.05 m w.e. a−1) and 2009–2014 is not reflected in the geodetic mass balance trend. Therefore, we suspect a reduction in ice-discharge in the most recent period. Yet, these multidecadal changes in ice-discharge cannot be measured from the available observations and thus are only estimated with relatively large errors as a residual of the mass continuity equation. Our study presents the multidecadal evolution of the dynamics and mass balance of a tidewater glacier and illustrates the errors introduced by inferring one unmeasured mass-balance component from the others.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Correspondence: César Deschamps-Berger <>


Hide All
Altena, B (2008) Hypsometric measurements in Holtedahlfonna in 1966 and 1990. (Report Bachelor Internship), Hogeschool Utrecht
Bader, H (1954) Sorge's law of densification of snow on high polar glaciers. J. Glaciol., 2(15), 319323
Bahr, K (2015) High resolution glacier dynamics from GNSS measurements on Holtedahlfonna, NW Svalbard. (Master's thesis, University of Oslo)
Berthier, E and 10 others (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere 8(6), 22752291 (doi:10.5194/tc-8-2275-2014)
Błaszczyk, M, Jania, JA and Hagen, JO (2009) Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Pol. Polar Res., 30(2), 85142
Bourgeois, S, Kerhervé, P, Calleja, M, Many, G and Morata, N (2016) Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst., 164, 112127 (doi:10.1016/j.jmarsys.2016.08.009)
Carr, JR, Stokes, CR and Vieli, A (2013) Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: twenty years of rapid change. Prog. Phys. Geogr., 37(4), 436467 (doi:10.1177/0309133313483163)
Carr, JR, Stokes, C and Vieli, A (2014) Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. J. Glaciol., 60(219), 155170 (doi:10.3189/2014JoG13J122)
Christianson, K, Kohler, J, Alley, RB, Nuth, C and Van Pelt, W (2015) Dynamic perennial firn aquifer on an Arctic glacier. Geophys. Res. Lett., 42(5), 14181426 (doi:10.1002/2014GL062806)
Cogley, JG and 9 others (2011) Glossary of glacier mass balance and related terms. UNESCO-IHP, Paris
Dunse, T and 5 others (2015) Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. Cryosphere, 9, 197215 (doi:10.5194/tc-9-197-2015)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41(3), 866872 (doi:10.1002/2013GL059010)
Farinotti, D and 36 others (2017) How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere, 11(2), 949970 (doi:10.5194/tc-11-949-2017)
Gardner, AS and 8 others (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473(7347), 357360 (doi:10.1038/nature10089)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi:10.1126/science.1234532)
Heid, T and Kääb, A (2012) Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ., 118, 339355 (doi:10.1016/j.rse.2011.11.024)
Hill, EA, Carr, JR and Stokes, CR (2017) A review of recent changes in major marine-terminating outlet glaciers in Northern Greenland. Front. Earth Sci., 4, 123 (doi:10.3389/feart.2016.00111)
Höhle, J and Höhle, M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens., 64(4), 398406 (doi:10.1016/j.isprsjprs.2009.02.003)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7(3), 877887 (doi:10.5194/tc-7-877-2013)
Huss, M and Hock, R (2015) A new model for global glacier change and sea-level rise. Front. Earth Sci., 3, 122 (doi:10.3389/feart.2015.00054)
James, TD and 5 others (2012) Observations of enhanced thinning in the upper reaches of Svalbard glaciers. Cryosphere, 6(6), 13691381 (doi:10.5194/tc-6-1369-2012)
Kääb, A, Lefauconnier, B and Melvold, K (2005) Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data. Ann. Glaciol., 42, 713 (doi:10.3189/172756405781812916)
Kohler, J and 7 others (2007) Acceleration in thinning rate on western Svalbard glaciers. Geophys. Res. Lett., 34(18), 15 (doi:10.1029/2007GL030681)
Köhler, A and 5 others (2016) A 15 year record of frontal glacier ablation rates estimated from seismic data. Geophys. Res. Lett., 43(23), 12,15512,164 (doi:10.1002/2016GL070589)
Korona, J, Berthier, E, Bernard, M, Rémy, F and Thouvenot, E (2009) SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth international polar year (2007–2009). ISPRS J. Photogramm. Remote Sens., 64(2), 204212 (doi:10.1016/j.isprsjprs.2008.10.005)
Lacroix, P, Berthier, E and Maquerhua, ET (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens. Environ., 165, 148158 (doi:10.1016/j.rse.2015.05.010)
Lefauconnier, B (1992) Recent fluctuations of glaciers in Kongsfjorden, Spitsbergen, Svalbard (79° N). Polar Geogr., 16(3), 226233 (doi:10.1080/10889379209377490)
Lefauconnier, B, Hagen, JO and Rudant, J-P (1994) Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images. Polar Res., 13(1), 5965 (doi:10.1111/j.1751-8369.1994.tb00437.x)
Leprince, S, Barbot, S, Ayoub, F and Avouac, JP (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens., 45(6), 15291558 (doi:10.1109/TGRS.2006.888937)
Lindbäck, K and 8 others (2018) Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard. Earth Syst. Sci. Data, 10, 1769178119 (
Luckman, A and 5 others (2015) Calving rates at tidewater glaciers vary strongly with ocean temperature. Nat. Commun., 6, 8566 (doi:10.1038/ncomms9566)
Marlin, C and 6 others (2017) Change in geometry of a high Arctic glacier from 1948 to 2013 (Austre Lovénbreen, Svalbard). Geogr. Ann. Ser. A, Phys. Geogr., 99(2), 115138 (doi:10.1080/04353676.2017.1285203)
Marzeion, B, Jarosch, AH and Hofer, M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 6, 12951322 (doi:10.5194/tc-6-1295-2012)
McNabb, RW and Hock, R (2014) Variations in Alaska tidewater glacier frontal ablation, 1985–2013. J. Geophys. Res. Earth Surf., 119(2), 153167 (doi:10.1002/2014JF003276.Received)
Melkonian, AK, Willis, MJ, Pritchard, ME and Stewart, AJ (2016) Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sens. Environ., 174, 244257 (doi:10.1016/j.rse.2015.11.001)
Melvold, K (1998) Evolution of a surge-type glacier in its quiescent phase: Kongsvegen, Spitsbergen, 1964–95. J. Glaciol., 44(147), 394404
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114(11), 27562767 (doi:10.1016/j.rse.2010.06.008)
Nick, FM, Vieli, A, Howat, IM and Joughin, I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2(2), 110114 (doi:10.1038/NGEO394)
Norwegian Polar Institute: Terrengmodell Svalbard (S0 Terrengmodell), (2014), Tromsø, Norway, Norwegian Polar Institute, (doi:10.21334/npolar.2014.dce53a47)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271290 (doi:10.5194/tc-5-271-2011)
Nuth, C, Schuler, TV, Kohler, J, Altena, B and Hagen, JO (2012) Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J. Glaciol., 58(207), 119133 (doi:10.3189/2012JoG11J036)
Nuth, C and 7 others (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere, 7(5), 16031621 (doi:10.5194/tc-7-1603-2013)
Osmanoǧlu, B, Braun, M, Hock, R and Navarro, FJ (2013) Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Ann. Glaciol., 54(63), 111119 (doi:10.3189/2013AoG63A517)
Paul, F and 24 others (2015) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ., 162, 408426 (doi:10.1016/j.rse.2013.07.043)
Pfeffer, WT and 19 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi:10.3189/2014JoG13J176)
Rasmussen, LA, Conway, H, Krimmel, RM and Hock, R (2011) Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007. J. Glaciol., 57(203), 431440 (doi:10.3189/002214311796905532)
Raup, B and 5 others (2007) The GLIMS geospatial glacier database: a new tool for studying glacier change. Glob. Planet Change, 56(1–2), 101110 (doi:10.1016/j.gloplacha.2006.07.018)
Reistad, M and 5 others (2011) A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. Oceans, 116(5), 118 (doi:10.1029/2010JC006402)
Schellenberger, T, Dunse, T, Kääb, A, Kohler, J and Reijmer, CH (2015) Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking. Cryosphere, 9(6), 23392355 (doi:10.5194/tc-9-2339-2015)
Shean, DE and 6 others (2016) An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens., 116, 101117 (doi:10.1016/j.isprsjprs.2016.03.012)
Sundfjord, A and 5 others (2017) Effects of glacier runoff and wind on surface layer dynamics and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study. Estuar. Coast. Shelf Sci., 187, 260272 (doi:10.1016/j.ecss.2017.01.015)
Undén, P and 26 others (2002) HIRLAM-5 scientific documentation. (Tech. rep.) Swedish Meteorological and Hydrological Institute, Norrkoping.
Van Pelt, W and Kohler, J (2015) Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol., 61(228), 731744 (doi:10.3189/2015JoG14J223)
Van Pelt, W and 5 others (2012) Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. Cryosphere, 6(3), 641659 (doi:10.5194/tc-6-641-2012)
Vaughan, D and 13 others (2013) Observations: cryosphere. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Willis, MJ, Herried, BG, Bevis, MG and Bell, RE (2015) Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature, 518(7538), 223227 (doi:10.1038/nature14116)
Zemp, M and 16 others (2013) Reanalysing glacier mass balance measurement series. Cryosphere, 7(4), 12271245 (doi:10.5194/tc-7-1227-2013)


Related content

Powered by UNSILO

Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.