Skip to main content Accessibility help
×
Home

A comparative study of changes in the Lambert Glacier/Amery Ice Shelf system, East Antarctica, during 2004–2008 using gravity and surface elevation observations

  • HUAN XIE (a1) (a2), RONGXING LI (a1) (a2), XIAOHUA TONG (a1) (a2), XIAOLEI JU (a1) (a2), JUN LIU (a1) (a2), YUNZHONG SHEN (a1) (a2), LEI CHEN (a1) (a2), SHIJIE LIU (a1) (a2), BO SUN (a3), XIANGBIN CUI (a3), YIXIANG TIAN (a1) (a2) and WENKAI YE (a1) (a2)...

Abstract

We present results of a regional comparative study of surface mass changes from 2004 to 2008 based on Gravity Recovery and Climate Experiment (GRACE), The Ice, Cloud and Land Elevation Satellite (ICESat) and CHINARE observations over the Lambert Glacier/Amery Ice Shelf system (LAS). Estimation of the ICESat mass change rates benefitted from the density measurements along the CHINARE traverse and a spatial density adjustment method for reducing the effect of spatial density variations. In the high-elevation inland region, a positive trend was estimated from both ICESat and GRACE data, which is in line with the CHINARE accumulation measurements. In the coastal region, there were areas with high level accumulations in both ICESat and GRACE trend maps. In many high flow-speed glacier areas, negative mass change rates may be caused by dynamic ice flow discharges that have surpassed the snow accumulation. Overall, the mass change rate estimate in the LAS of 2004–2008 from the GRACE, ICESat and CHINARE data is 5.41 ± 4.59 Gt a−1, indicating a balanced to slightly positive mass trend. Along with other published results, this suggests that a longer-term positive mass trend in the LAS may have slowed in recent years.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A comparative study of changes in the Lambert Glacier/Amery Ice Shelf system, East Antarctica, during 2004–2008 using gravity and surface elevation observations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A comparative study of changes in the Lambert Glacier/Amery Ice Shelf system, East Antarctica, during 2004–2008 using gravity and surface elevation observations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A comparative study of changes in the Lambert Glacier/Amery Ice Shelf system, East Antarctica, during 2004–2008 using gravity and surface elevation observations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Rongxing Li <RonLi_282@hotmail.com>

References

Hide All
Bamber, JL, Gomez-Dans, JL and Griggs, JA (2009a) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3, 101111
Bamber, JL, Riva, REM, Vermeersen, BLA and LeBroq, AM (2009b) Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science, 324(5929), 901903 (doi: 10.1126/science.1169335)
Barletta, V, Sørensen, L and Forsberg, R (2013) Scatter of mass changes at basin scale for Greenland and Antarctica. Cryosphere, 7, 14111432 (doi: 10.5194/tc-7-1411-2013)
Baur, O, Kuhn, M and Featherstone, W (2013) Continental mass change from GRACE over 2002–2011 and its impact on sea level. J. Geodesy, 87(2), 117125 (doi: 10.1007/s00190-012-0583-2)
Bettadpur, S (2007a) CSR level-2 processing standards document for product release 04. Report JPL 327-742, GRACE. The GRACE Project, Center For Space Research, University of Texas at Austin, Austin, Tex., USA, 327742
Bettadpur, S (2007b) Product specification document. Report JPL 327-720. Center for Space Research, University of Texas at Austin, Austin, Tex., USA
Bettadpur, S and The CSR Level-2 Team (2012) Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields. In Paper Presented at European Geosciences Union General Assembly 2012, Vienna, Austria.
Borsa, AA, Moholdt, G, Fricker, HA and Brunt, KM (2014) A range correction for ICESat and its potential impact on ice sheet mass balance studies. Cryosphere, 8, 345357 (doi: 10.5194/tc-8-345-2014)
Cazenave, A and Llovel, W (2010) Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173 (doi: 10.1146/annurev-marine-120308-081105)
Chen, JL, Wilson, CR, Blankenship, DD and Tapley, BD (2006) Antarctic mass rates from GRACE. Geophys. Res. Lett., 33, L11502 (doi: 10.1029/2006GL026369)
Chen, JL, Wilson, CR, Tapley, BD and Grand, S (2007) GRACE detects coseismic and postseismic deformation from the Sumatra- Andaman earthquake. Geophys. Res. Lett., 34, L13302 (doi: 10.1029/2007GL030356)
Chen, JL, Wilson, CR, Tapley, BD, Blankenship, D and Young, D (2008) Antarctic regional ice loss rates from GRACE. Earth Planet. Sci. Lett., 266(1), 140148 (doi: 10.1016/j.epsl.2007.10.057)
Chen, JL, Wilson, CR, Blankenship, D and Tapley, BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2(12), 859862 (doi: 10.1038/ngeo694)
Chen, QJ and 6 others (2015a) Monthly gravity field models derived from GRACE Level 1B data using a modified short-arc approach. J. Geophys. Res., 120(3), 18041819 (doi: 10.1002/2014JB011470)
Chen, QJ, Shen, YZ, Zhang, XF, Chen, W and Hsu, HZ (2015b) Tongji-GRACE01: a GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach. Adv. Space Res., 56(5), 941951 (doi: 10.1016/j.asr.2015.05.034)
Csatho, BM and 9 others (2014) Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl. Acad. Sci. USA, 111(52), 1847818483 (doi: 10.1073/pnas.1411680112)
Davis, CH (1992) Satellite radar altimetry. IEEE Trans. Microw. Theory Tech., 40(6), 10701076 (doi: 10.1109/22.141337)
Dibb, JE and Fahnestock, M (2004) Snow accumulation, surface height change, and firn densification at Summit, Greenland: insights from 2 years of in situ observation. J. Geophys. Res., 109, D24113 (doi: 10.1029/2003JD004300)
Ding, M and 6 others (2011) Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol., 57(204), 658666 (doi: 10.3189/002214311797409820)
Ding, M and 11 others (2013) The snowdrift effect on snow deposition: insights from a comparison of a snow pit profile and meteorological observations. Cryosphere Discuss., 7, 14151439 (doi: 10.5194/tcd-7-1415-2013)
Ding, M and 7 others (2015) Surface mass balance and its climate significance from the coast to Dome A, East Antarctica. Sci. China Earth Sci., 58(10), 17871797 (doi: 10.1007/s11430-015-5083-9)
Domingues, CM and 6 others (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093 (doi: 10.1038/nature07080)
Drinkwater, MR, Floberghagen, R, Haagmans, R, Muzi, D and Popescu, A (2003) GOCE: ESA's first Earth Explorer core mission. In Beutler, G and others eds. Earth Gravity Field from Space – From Sensors to Earth Science, Space Sciences Series of ISSI, vol. 18. Kluwer Academic Publishers, Dordrecht, Netherlands, 419432
Drinkwater, MR, Francis, R, Ratier, G and Wingham, D (2004) The European Space Agency's Earth Explorer mission CryoSat: measuring variability in the cryosphere. Ann. Glaciol., 39(1), 313320 (doi: 10.3189/172756404781814663)
Eisen, O and 15 others (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev. Geophys., 46, RG2001 (doi: 10.1029/2006RG000218)
ESRI (Environmental Systems Research Institute) (2014) ArcGIS Desktop: Release 10.2.1. Redlands, CA
Ewert, H, Groh, A and Dietrich, R (2012) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn., 59(SI), 111123 (doi: 10.1016/j.jog.2011.06.003)
Farrell, WE (1972) Deformation of the Earth by surface loads. Rev. Geophys. Space Phys., 10, 761791
Flament, N, Gurnis, M and Muller, R (2013) A review of observations and models of dynamic topography. Lithosphere, 5(2), 189210
Foley, KM, Ferrigno, JG, Swithinbank, C, Williams, RS Jr and Orndorff, AL (2013) Coastal-change and glaciological map of the Amery Ice Shelf Area, Antarctica: 1961–2004. U.S. Geologic Investigations Series Map, U.S. Geological Survey, U.S. Department of the Interior
Fricker, HA, Warner, RC and Allison, I (2000) Mass balance of the Lambert Glacier-Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. J. Glaciol., 46(155), 561570 (doi: 10.3189/172756500781832765)
Fricker, HA and 5 others (2005) Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophys. Res. Lett., 32, L21S06 (doi: 10.1029/2005GL023423)
Gunter, B and 8 others (2009) A comparison of coincident GRACE and ICESat data over Antarctica. J. Geod., 83(11), 10511060 (doi: 10.1007/s00190-009-0323-4)
Haran, T, Bohlander, J, Scambos, T, Painter, T and Fahnestock, M (2014) MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map (coastline). National Snow and Ice Data Center, Boulder, Colorado
Hoaglin, DC, Mosteller, F and Tukey, W (1983) Understanding Robust and Exploratory Data Analysis. John Wiley & Sons, Inc., New York, NY
Horwath, M and Dietrich, R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys. J. Int., 177(3), 849864 (doi: 10.1111/j.1365-246X.2009.04139.x)
Howat, IM, Smith, BE, Joughin, I and Scambos, TA (2008) Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys. Res. Lett., 35, L17505 (doi: 10.1029/2008GL034496)
Ivins, ER (2009) Ice sheet stability and sea level. Science, 324(5929), 888889 (doi: 10.1126/science.1173958)
Ivins, ER and James, TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci., 17, 541553 (doi: 10.1017/S0954102005002968)
Ivins, ER and 5 others (2013) Antarctic contribution to sea-level rise observed by GRACE with improved GIA correction. J. Geophys. Res., 6(118), 31263141 (doi: 10.1002/jgrb.50208)
Jekeli, C (1981) Alternative methods to smooth the Earth's gravity field. Report 327. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Oh., USA
King, MA and 5 others (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491(7425), 586589 (doi: 10.1038/nature11621)
Koenig, L, Martin, S, Studinger, M and Sonntag, J (2010) Polar airborne observations fill gap in satellite data. Eos Trans. Am. Geophys. Union, 91(38), 333 (doi: 10.1029/2010EO380002)
Lambeck, K (1977) Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. Philos. Trans. R. Soc. Lond. Ser. A, 287(1347), 545594 (doi: 10.1098/rsta.1977.0159)
Leick, A (2004) GPS Satellite Surveying, 3rd edn. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 464 pp
Li, J and Zwally, HJ (2011) Modeling of firn compaction for estimating ice-sheet mass change from observed ice-sheet elevation change. Ann. Glaciol., 52(59), 17 (doi: 10.3189/172756411799096321)
LIMA (Landsat Image Mosaic of Antarctica) (2012) Antarctica Overview Map. http:lima.nasa.gov/pdf/A3_overview.pdf, last accessed on Dec. 10, 2012
Liu, J and 6 others (2012) Elevation change of Lambert-Amery system from ICESat/GLAS data. In Paper Presented at the Second Int. Workshop on Earth Observation and Remote Sensing Applications (EORSA), Shanghai, China
Liu, XL (2008) Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. (PhD thesis, Delft University of Technology, Delft), 226 pp
Liu, Y and 7 others (2015) Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl. Acad. Sci. USA, 112(11), 32633268 (doi: 10.1073/pnas.1415137112)
Luo, ZC, Li, Q, Zhang, K and Wang, HH (2012) Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field. Sci. China Ser. D, 55(1), 7682 (doi: 10.1007/s11430-011-4275-1)
Manson, R, Coleman, R, Morgan, P and King, M (2000) Ice velocities of the Lambert Glacier from static GPS observations. Earth Planets Space, 52(11), 10311036 (doi: 10.1186/BF03352326)
McMillan, M and 7 others (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett., 41, 38993905 (doi: 10.1002/2014GL060111)
Memin, A, Flament, T, Rémy, F and Llubes, M (2014) Snow- and ice-height change in Antarctica from satellite gravimetry and altimetry data. Earth Planet. Sci. Lett., 404, 344353 (doi: 10.1016/j.epsl.2014.08.008)
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114(11), 27562767 (doi: 10.1016/j.rse.2010.06.008)
Moholdt, G, Padman, L and Fricker, HA (2014) Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. J. Geophys. Res., 119, 23612380 (doi: 10.1002/2014JF003171)
Nakada, M and 5 others (2000) Late Pleistocene and Holocene melting history of the Antarctic Ice Sheet derived from sea-level variations. Mar. Geol., 167(1–2), 85113 (doi: 10.1016/S0025-3227(00)00018-9)
NSIDC (2015) Correction to product surface elevations. http://nsidc.org/data/icesat/correction-to-product-surface-elevations.html, last accessed on 2/24/2015
Paolo, FS, Fricker, HA and Padman, L (2015) Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327331 (doi: 10.1126/science.aaa0940)
Paulson, A, Zhong, S and Wahr, J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int., 171(2), 497508 (doi: 10.1111/j.1365-246X.2007.03556.x)
Reigber, C, Lühr, H and Schwintzer, P (2002a) CHAMP mission status. Adv. Space Res., 30(2), 129134 (doi: 10.1016/S0273-1177(02)00276-4)
Reigber, C and 9 others (2002b) A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett., 29(14), 37-137-4 (doi: 10.1029/2002GL015064)
Rémy, F and Parouty, S (2009) Antarctic Ice Sheet and radar altimetry: a review. Remote Sens., 1(4), 12121239 (doi: 10.3390/rs1041212)
Ren, JW, Allison, I, Xiao, CD and Qin, DH (2002) Mass balance of the Lambert Glacier basin, East Antarctica. Sci. China Ser. D, 45(9), 842850 (doi: 10.1007/BF02879518)
Rignot, E and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat. Geosci., 1, 106110 (doi: 10.1038/ngeo102)
Rignot, E, Velicogna, I, van den Broeke, MR, Monaghan, A and Lenaerts, J (2011a) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503 (doi: 10.1029/2011GL046583)
Rignot, E, Mouginot, J and Scheuchl, B (2011b) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Rummel, R, Balmino, G, Johannessen, J, Visser, P and Woodworth, P (2002) Dedicated gravity field missions – principles and aims. J. Geodyn., 33(1–2), 320 (doi: 10.1016/S0264-3707(01)00050-3)
Sabadini, R and Vermeersen, B (2004) Global dynamics of the Earth: applications of normal mode relaxation theory to solid-earth geophysics. Mod. Approaches Geophys., 20, 329 pp. Springer, Dordrecht, Netherlands
Sasgen, I and 6 others (2013) Antarctic ice-mass balance 2002 to 2011: regional re-analysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment. Cryosphere, 7, 14991512 (doi: 10.5194/tc-7-1499-2013)
Schenk, T and Csathó, B (2012) A new methodology for detecting ice sheet surface elevation changes from laser altimetry data. IEEE Trans. Geosci. Remote Sens., 50(9), 33023316
Schutz, BE, Zwally, HJ, Shuman, CA, Hancock, D and DiMarzio, JP (2005) Overview of the ICESat mission. Geophys. Res. Lett., 32, L21S01 (doi: 10.1029/2005GL024009)
Shepherd, A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Shuman, CA and 6 others (2006) ICESat Antarctic elevation data: preliminary precision and accuracy assessment. Geophys. Res. Lett., 33, L07501 (doi: 10.1029/2005GL025227)
Slobbe, DC, Lindenbergh, RC and Ditmar, P (2008) Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints. Remote Sens. Environ., 112(12), 42044213 (doi: dx.doi.org/10.1016/j.rse.2008.07.004)
Swenson, S and Wahr, J (2006) Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402 (doi: 10.1029/2005GL025285)
Swenson, S, Chambers, D and Wahr, J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113, B08410 (doi: 10.1029/2007JB005338)
Takahashi, S and Kameda, T (2007) Instruments and methods. Snow density for measuring surface mass balance using the stake method. J Glaciol., 53(183), 677680 (doi: 10.3189/002214307784409360)
Tang, J, Cheng, H and Liu, L (2012) Using nonlinear programming to correct leakage and estimate mass change from GRACE observation and its application to Antarctica. J. Geophys. Res., 117, B11410 (doi: 10.1029/2012JB009480)
Tapley, BD, Bettadpur, S, Watkins, M and Reigber, C (2004a) The gravity recovery and climate experiment: mission overview and early results, Geophys. Res. Lett., 31, L09607 (doi: 10.1029/2004GL019920)
Tapley, BD, Bettadpur, S, Ries, JC, Thompson, PF and Watkins, MM (2004b) GRACE Measurements of mass variability in the Earth system. Science, 305, 503505 (doi: 10.1126/science.1099192)
Vaughan, DG and 13 others (2013) Observations: Cryosphere. In Stocker, and others eds. Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 317383
Velicogna, I and Wahr, J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys. Res. Lett., 40, 30553063 (doi: 10.1002/grl.50527)
Wahr, J, Molenaar, M and Bryan, F (1998) Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103(B12), 3020530229 (doi: 10.1029/98JB02844)
Wahr, J, Swenson, S, Zlotnicki, V and Velicogna, I (2004) Time-variable gravity from GRACE: first results. Geophys. Res. Lett., 31, L11501 (doi: 10.1029/2004GL019779)
Wahr, J, Swenson, S and Velicogna, I (2006) Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33(6), L025305 (doi: 10.1029/2005GL025305)
Wang, H, Wu, P and Xu, H (2009) A review of research in glacial isostatic adjustment. Progr. Geophys., 24(6), 19581967 (doi: 10.3969/j.issn.1004-2903.2009.06.005)
Whitehouse, PL, Bentley, MJ, Milne, GA, King, MA and Thomas, ID (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int., 190, 14641482 (doi: 10.1111/j.1365-246X.2012.05557.x)
Wingham, DJ and 15 others (2006a) CryoSat: a mission to determine the fluctuations in Earth's land and marine ice fields. Adv. Space Res., 37(4), 841871 (doi: 10.1016/j.asr.2005.07.027)
Wingham, DJ, Shepherd, A, Muir, A and Marshall, GJ (2006b) Mass balance of the Antarctic ice sheet. Phil. Trans. R. Soc. A, 364(1844), 16271635 (doi: 10.1098/rsta.2006.1792)
Yamamoto, K, Yoichi, F and Koichiro, D (2010) Interpretation of GIA and ice-sheet mass trends over Antarctica using GRACE and ICESat data as a constraint to GIA models. Tectonophysics, 511(3–4), 6978 (doi: 10.1016/j.tecto.2010.11.010)
Yu, J, Liu, H, Jezek, KC, Warner, RC and Wen, J (2010) Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier–Amery Ice Shelf System by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements. J. Geophys. Res., 115, B11102 (doi: 10.1029/2010JB007456)
Zhang, SK, Dongchen, E., Wang, ZM, Li, YS, Jin, B and Zhou, CX (2008) Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica. Ann. Glaciol., 48, 113117 (doi: 10.3189/172756408784700716)
Zhang, ZZ, Chao, BF, Lu, Y and Hsu, HT (2009) An effective filtering for GRACE time-variable gravity: fan filter. Geophys. Res. Lett., 36, L17311 (doi: 10.1029/2009GL039459)
Zhao, Q and 6 others (2011) GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. Adv. Space Res., 47(10), 18331850 (doi: 10.1016/j.asr.2010.11.041)
Zwally, HJ and Giovinetto, MB (2011) Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992–2009. Surv. Geophys., 32, 351376 (doi: 10.1007/s10712-011-9123-5)
Zwally, HJ and Li, J (2002) Seasonal and interannual variations of firn densification and ice-sheet surface elevation at Greenland summit. J. Glaciol., 48(161), 199207 (doi: 10.3189/172756502781831403)
Zwally, HJ, Bindschadler, RA, Brenner, AC, Major, JA and Marsh, JG (1989) Growth of Greenland ice sheet: measurement. Science, 246(4937), 15871589 (doi: 10.1126/science.246.4937.1587)
Zwally, HJ and 15 others (2002) ICESat's laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn., 34(3–4), 405445 (doi: 10.1016/S0264-3707(02)00042-X)
Zwally, HJ and 7 others (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509527 (doi: 10.3189/172756505781829007)
Zwally, HJ, Giovinetto, MB, Beckley, MA and Saba, JL (2012) Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences Laboratory. http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php.

Keywords

Type Description Title
WORD
Supplementary materials

Xie supplementary material
Xie supplementary material 1

 Word (784 KB)
784 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed