Skip to main content
×
×
Home

Conduit roughness and dye-trace breakthrough curves: why slow velocity and high dispersivity may not reflect flow in distributed systems

  • J.D. Gulley (a1) (a2), P. Walthard (a2) (a3), J. Martin (a4), A.F. Banwell (a2) (a5), D.I. Benn (a2) (a6) and G. Catania (a1) (a7)...
Abstract

Dye-trace breakthrough curves (BTCs) that increase in velocity and decrease in dispersivity through a melt season have been interpreted as indicating a switch from a distributed to a conduit subglacial drainage system, but this interpretation has not been validated in glaciers where the drainage system configuration was independently known. To test if processes other than a change in the configuration of the subglacial drainage system could produce similar BTCs, we measured BTCs from a persistent, mapped subglacial conduit beneath Rieperbreen, Svalbard, which lacks a distributed system because it is frozen to its bed. This conduit produced slow and highly dispersed BTCs early in the melt season when meltwater delivery rates were low, and fast and sharply peaked BTCs after the snowpack had retreated past the injection moulin. At Rieperbreen, the seasonal evolution of BTCs was controlled by decreases in conduit roughness as increased rates of meltwater delivery increased the relative submergence depths of rocks on the conduit floor. Because seasonal changes in roughness can produce slow and highly dispersed BTCs, dye-tracing studies may not be capable of uniquely identifying subglacial drainage system configurations. As a result, conduits may form earlier in melt seasons than previously recognized.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Conduit roughness and dye-trace breakthrough curves: why slow velocity and high dispersivity may not reflect flow in distributed systems
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Conduit roughness and dye-trace breakthrough curves: why slow velocity and high dispersivity may not reflect flow in distributed systems
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Conduit roughness and dye-trace breakthrough curves: why slow velocity and high dispersivity may not reflect flow in distributed systems
      Available formats
      ×
Copyright
References
Hide All
Anderson, RS and 6 others (2004) Strong feedbacks between hydrology and sliding of a small alpine glacier. J. Ceophys. Res., 109(F3), F03005 (doi: 10.1029/2004JF000120)
Arnold, N, Richards, K, Willis, I and Sharp, M (1998) Initial results from a distributed, physically-based model of glacier hydrology. Hydrol. Process., 12(2), 191-219 (doi: 10.1002/(SICI)1099- 1085(199802)12:2<191::AID-HYP571>3.0.CG;2-C)
Benn, DI and Evans, DJA (2010) Glaciers and glaciation, 2nd edn. Hodder Education, London
Benn, D, Gulley, J, Luckman, A, Adamek, A and Glowacki, PS (2009) Englacial drainage systems formed by hydrologically driven crevasse propagation. J. Claciol., 55(191), 513-523 (doi: 10.3189/002214309788816669)
Bingham, RG, Nienow, PW, Sharp, MJ and Boon, S (2005) Subglacial drainage processes at a High Arctic polythermal valley glacier. J. Claciol., 51(172), 15-24 (doi: 10.3189/ 172756505781829520)
Catania, GA and Neumann, TA (2010) Persistent englacial drainage features in the Greenland Ice Sheet. Ceophys. Res. Lett., 37(2), L02501 (doi: 10.1029/2009GL041108)
Covington, MD, Banwell, AF, Gulley, J, Saar, MO, Willis, I and Wicks, CM (2012) Quantifying the effects of glacier conduit geometry and recharge on proglacial hydrograph form. J. Hydrol., 414(415) (doi: 10.1016/j.jhydrol.2011.10.027)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Flowers, GE (2008) Subglacial modulation of the hydrograph from glacierized basins. Hydrol. Process., 22(19), 3903-3918 (doi: 10.1002/hyp.7095)
Fountain, AG (1993) Geometry and flow conditions of subglacial water at South Cascade Glacier, Washington State, U.S.A.; an analysis of tracer injections. J. Claciol., 39(131), 143-156
Fountain, AG and Walder, JS (1998) Water flow through temperate glaciers. Rev. Ceophys., 36(3), 299-328 (doi: 10.1029/ 97RG03579)
Gelhar, LW, Welty, C and Rehfeldt, KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour. Res., 28(7), 1955-1974 (doi: 10.1029/92WR00607)
Glimm, J, Lindquist, WB, Pereira, F and Zhang, Q (1993) A theory of macrodispersion for the scale-up problem. Transport Porous Med., 13(1), 97-122
Gordon, S, Sharp, M, Hubbard, B, Smart, C, Ketterling, B and Willis, I (1998) Seasonal reorganization of subglacial drainage inferred from measurements in boreholes. Hydrol. Process., 12(1), 105-133
Gulley, JD, Benn, DI, Screaton, E and Martin, J (2009) Mechanisms of englacial conduit formation and their implications for subglacial recharge. Quat. Sci. Rev., 28(1920), 1984-1999 (doi: 10.1016/ j.quascirev.2009.04.002)
Gulley, JD, Grabiec, M, Martin, JB, Jania, J, Catania, G and Glowacki, P (in press) The effect of discrete recharge by moulins and heterogeneity in flow path efficiency at glacier beds on subglacial hydrology. J. Claciol., 58(211), 926-940
Harbor, J, Sharp, M, Copland, L, Hubbard, B, Nienow, P and Mair, D (1997) The influence of subglacial drainage conditions on the velocity distribution within a glacier cross section. Ceology, 25(8), 739-742
Hauns, M, Jeannin, PY and Atteia, O (2001) Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits. J. Hydrol., 241(3), 177-193
Hock, R and Hooke, RLeB (1993) Evolution of the internal drainage system in the lower part of the ablation area of Storglaciaren, Sweden. Ceol. Soc. Am. Bull., 105(4), 537-546
Hock, R, Iken, A and Wangler, A (1999) Tracer experiments and borehole observations in the overdeepening of Aletschgletscher, Switzerland. Ann. Claciol., 28, 253-260 (doi: 10.3189/ 172756499781821742)
Hooke, RLeB and Pohjola, VA (1994) Hydrology of a segment of a glacier situated in an overdeepening, Storglaciaren, Sweden. J. Claciol., 40(134), 140-148
Hubbard, B and Glasser, N (2005) Field techniques in glaciology and glacial geomorphology. Wiley, New York
Jobard, S and Dzikowski, M (2006) Evolution of glacial flow and drainage during the ablation season. J. Hydrol., 330 (3-4), 663671 (doi: 10.1016/j.jhydrol.2006.04.031)
Kamb, B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Ceophys. Res., 92(B9), 9083-9100 (doi: 10.1029/JB092iB09p09083)
Levy, M and Berkowitz, B (2003) Measurement and analysis of non- Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol., 64(3-4), 203-226 (doi: 10.1016/S0169- 7722(02)00204-8)
Li, G and Loper, DE (2011) Transport, dilution, and dispersion of contaminant in a leaky karst conduit. Transport Porous Media, 88(1), 31-43 (doi: 10.1007/s11242-011-9721-1)
Lysa, A and Lonne, I (2001) Moraine development at a small High- Arctic valley glacier: Rieperbreen, Svalbard. J. Quat. Sci., 16(6), 519-529
Mair, D, Nienow, P, Sharp, M, Wohlleben, T and Willis, I (2002) Influence of subglacial drainage system evolution on glacier surface motion: Haut Glacier d'Arolla, Switzerland. J. Ceophys. Res., 107(B8), 2175 (doi: 10.1029/2001JB000514)
Molz, FJ, Guven, O and Melville, JG (1983) An examination of scale-dependent dispersion coefficients. Cround Water, 21(6), 715-725 (doi: 10.1111/j.1745-6584.1983.tb01942.x)
Nienow, P (1993) Dye tracer investigations of glacier hydrological systems. (PhD thesis, University of Cambridge)
Nienow, PW, Sharp, MJ and Willis, IC (1996) Velocity-discharge relationships derived from dye tracer experiments in glacial meltwaters: implications for subglacial flow conditions. Hydrol. Process., 10(10), 1411-1426
Nienow, P, Sharp, M and Willis, I (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d'Arolla, Switzerland. Earth Surf. Process. Landf., 23(9), 825-843
Özger, M and Yildirim, G (2009) Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique. Adv. Eng. Softw., 40(4), 281-287 (doi: 10.1016/j.advengsoft. 2008.04.006)
Palmer, AN (2007) Cave geology. Cave Books, Dayton, OH
Schuler, T and Fischer, UH (2003) Elucidating changes in the degree of tracer dispersion in a subglacial channel. Ann. Claciol., 37, 275-280 (doi: 10.3189/172756403781815915)
Schuler, TV and Fischer, UH (2009) Modeling the diurnal variation of tracer transit velocity through a subglacial channel. J. Ceophys. Res., 114(F4), F04017 (doi: 10.1029/2008JF001238)
Schuler, T, Fischer, UH and Gudmundsson, GH (2004) Diurnal variability of subglacial drainage conditions as revealed by tracer experiments. J. Ceophys. Res., 109(F2), F02008 (doi: 10.1029/2003JF000082)
Seaberg, SZ, Seaberg, JZ, Hooke, RLeB and Wiberg, DW (1988) Character of the englacial and subglacial drainage system in the lower part of the ablation area of Storglaciaren, Sweden, as revealed by dye-trace studies. J. Claciol., 34(117), 217-227
Stenborg, T (1969) Studies of the internal drainage of glaciers. Ceogr. Ann., 51A(1-2), 13-41
Werder, MA and Funk, M (2009) Dye tracing a jokulhlaup: II. Testing a jokulhlaup model against flow speeds inferred from measurements. J. Claciol., 55(193), 899-908 (doi: 10.3189/ 002214309790152375)
Werder, MA, Schuler, TV and Funk, M (2010) Short term variations of tracer transit speed on alpine glaciers. Cryosphere, 4(3), 381-396 (doi: 10.5194/tc-4-381-2010)
Willis, IC, Sharp, MJ and Richards, KS (1990) Configuration of the drainage system of Midtdalsbreen, Norway, as indicated by dye- tracing experiments. J. Claciol., 36(122), 89-101
Willis, IC, Arnold, NS and Brock, BW (2002) Effect of snowpack removal on energy balance, melt and runoff in a small supraglacial catchment. Hydrol. Process., 16(14), 2721-2749 (doi: 10.1002/hyp.1067)
Willis, I, Lawson, W, Owens, I, Jacobel, R and Autridge, J (2009) Subglacial drainage system structure and morphology of Brewster Glacier, New Zealand. Hydrol. Process., 23(3), 384-396 (doi: 10.1002/hyp.7146)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed