Skip to main content
×
×
Home

Controls on rapid supraglacial lake drainage in West Greenland: an Exploratory Data Analysis approach

  • ANDREW G. WILLIAMSON (a1), IAN C. WILLIS (a1), NEIL S. ARNOLD (a1) and ALISON F. BANWELL (a1)
Abstract

The controls on rapid surface lake drainage on the Greenland ice sheet (GrIS) remain uncertain, making it challenging to incorporate lake drainage into models of GrIS hydrology, and so to determine the ice-dynamic impact of meltwater reaching the ice-sheet bed. Here, we first use a lake area and volume tracking algorithm to identify rapidly draining lakes within West Greenland during summer 2014. Second, we derive hydrological, morphological, glaciological and surface-mass-balance data for various factors that may influence rapid lake drainage. Third, these factors are used within Exploratory Data Analysis to examine existing hypotheses for rapid lake drainage. This involves testing for statistical differences between the rapidly and non-rapidly draining lake types, as well as examining associations between lake size and the potential controlling factors. This study shows that the two lake types are statistically indistinguishable for almost all factors investigated, except lake area. Thus, we are unable to recommend an empirically supported, deterministic alternative to the fracture area threshold parameter for modelling rapid lake drainage within existing surface-hydrology models of the GrIS. However, if improved remotely sensed datasets (e.g. ice-velocity maps, climate model outputs) were included in future research, it may be possible to detect the causes of rapid drainage.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Controls on rapid supraglacial lake drainage in West Greenland: an Exploratory Data Analysis approach
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Controls on rapid supraglacial lake drainage in West Greenland: an Exploratory Data Analysis approach
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Controls on rapid supraglacial lake drainage in West Greenland: an Exploratory Data Analysis approach
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: A.G. Williamson <agw41@cam.ac.uk>
References
Hide All
Alley, RB, Dupont, TK, Parizek, BR and Anandakrishnan, S (2005) Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann. Glaciol., 40, 814 (https://doi.org/10.3189/172756405781813483)
Andrews, LC and 7 others (2014) Direct observations of evolving subglacial drainage beneath the Greenland ice sheet. Nature, 514(7520), 8083 (https://doi.org/10.1038/nature13796)
Arnold, NS, Banwell, AF and Willis, IC (2014) High-resolution modelling of the seasonal evolution of surface water storage on the Greenland ice sheet. Cryosphere, 8(4), 11491160 (https://doi.org/10.5194/tc-8-1149-2014)
Banwell, AF, Arnold, NS, Willis, IC, Tedesco, M and Ahlstrøm, AP (2012) Modeling supraglacial water routing and lake filling on the Greenland ice sheet. J. Geophys. Res.: Earth Surf., 117, F04012 (https://doi.org/10.1029/2012JF002393)
Banwell, AF, Willis, IC and Arnold, NS (2013) Modeling subglacial water routing at Paakitsoq, W Greenland. J. Geophys. Res.: Earth Surf., 118(3), 12821295 (https://doi.org/10.1002/jgrf.20093)
Banwell, AF and 5 others (2014) Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, west Greenland: a comparative study. Ann. Glaciol., 55(66), 18 (https://doi.org/10.3189/2014AoG66A049)
Banwell, A, Hewitt, I, Willis, I and Arnold, N (2016) Moulin density controls drainage development beneath the Greenland ice sheet. J. Geophys. Res.: Earth Surf., 121(12), 22482269 (https://doi.org/10.1002/2015jf003801)
Bartholomew, I and 5 others (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci., 3(6), 408411 (https://doi.org/10.1038/ngeo863)
Bartholomew, ID and 6 others (2011a) Seasonal variations in Greenland ice sheet motion: inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett., 307(3), 271278 (https://doi.org/10.1016/j.epsl.2011.04.014)
Bartholomew, I and 6 others (2011b) Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett., 38, L08502 (https://doi.org/10.1029/2011GL047063)
Bartholomew, I and 5 others (2012) Short-term variability in Greenland ice sheet motion forced by time-varying meltwater drainage: implications for the relationship between subglacial drainage system behavior and ice velocity. J. Geophys. Res.: Earth Surf., 117, F03002 (https://doi.org/10.1029/2011jf002220)
Boon, S and Sharp, M (2003) The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier. Geophys. Res. Lett., 30, L018034 (https://doi.org/10.1029/2003GL018034)
Bougamont, M and 5 others (2014) Sensitive response of the Greenland ice sheet to surface melt drainage over a soft bed. Nat. Comm., 5(5052) (https://doi.org/10.1038/ncomms6052)
Box, JE and Ski, K (2007) Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol., 53(181), 257265 (https://doi.org/10.3189/172756507782202883)
Catania, GA, Neumann, TA and Price, SF (2008) Characterizing englacial drainage in the ablation zone of the Greenland ice sheet. J. Glaciol., 54(187), 567578 (https://doi.org/10.3189/002214308786570854)
Chandler, DM and 11 others (2013) Evolution of the subglacial drainage system beneath the Greenland ice sheet revealed by tracers. Nat. Geosci., 6(3), 195198 (https://doi.org/10.1038/ngeo1737)
Chen, C, Howat, IM and de la Peña, S (2017) Formation and development of supraglacial lakes in the percolation zone of the Greenland ice sheet. J. Glaciol., 63, 847853 (https://doi.org/10.1017/jog.2017.50)
Chu, VW (2014) Greenland ice sheet hydrology: a review. Prog. in Phys. Geogr., 38(1), 1954 (https://doi.org/10.1177/0309133313507075)
Clason, C, Mair, DW, Burgess, DO and Nienow, PW (2012) Modelling the delivery of supraglacial meltwater to the ice/bed interface: application to southwest Devon ice cap, Nunavut, Canada. J. Glaciol., 58(208), 361374 (https://doi.org/10.3189/2012JoG11J129)
Clason, CC and 6 others (2015) Modelling the transfer of supraglacial meltwater to the bed of leverett glacier, southwest Greenland. Cryosphere, 9, 123138 (https://doi.org/10.5194/tc-9-123-2015)
Colgan, W and 7 others (2011a) The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: part 1. Hydrology model. J. Glaciol., 57(204), 697709 (https://doi.org/10.3189/002214311797409668)
Colgan, W and 7 others (2011b) An increase in crevasse extent, west Greenland: hydrologic implications. Geophys. Res. Lett., 38, L18503 (https://doi.org/10.1029/2011GL048491)
Cooley, SW and Christoffersen, P (2017) Observation bias correction reveals more rapidly draining lakes on the Greenland ice sheet. J. Geophys. Res.: Earth Surf., 122, 18671881 (https://doi.org/10.1002/2017JF004255)
Cowton, T and 7 others (2013) Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res.: Earth Surf., 118(1), 2941 (https://doi.org/10.1029/2012jf002540)
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 320(5877), 778781 (https://doi.org/10.1126/science.1153360)
Dow, CF, Kulessa, B, Rutt, IC, Doyle, SH and Hubbard, A (2014) Upper bounds on subglacial channel development for interior regions of the Greenland ice sheet. J. Glaciol., 60(224), 10441052 (https://doi.org/10.3189/2014JoG14J093)
Doyle, SH and 9 others (2013) Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland ice sheet. Cryosphere, 7(1), 129140 (https://doi.org/10.5194/tc-7-129-2013)
Doyle, SH and 6 others (2014) Persistent flow acceleration within the interior of the Greenland ice sheet. Geophys. Res. Lett., 41, 899905 (https://doi.org/10.1002/2013GL058933)
Everett, A and 10 others (2016) Annual down-glacier drainage of lakes and water-filled crevasses at Helheim glacier, southeast Greenland. J. Geophys. Res.: Earth Surf., 121(10), 18191833 (https://doi.org/10.1002/2016JF003831)
Fahnestock, M and 5 others (2016) Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ., 185, 8494 (https://doi.org/10.1016/j.rse.2015.11.023)
Fitzpatrick, AAW and 8 others (2013) Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet. J. Glaciol., 59(216), 687696 (https://doi.org/10.3189/2013JoG12J143)
Fitzpatrick, AAW and 9 others (2014) A decade (2002–2012) of supraglacial lake volume estimates across Russell glacier, west Greenland. Cryosphere, 8(1), 107121 (https://doi.org/10.5194/tc-8-107-2014)
Gledhill, LA and Williamson, AG (2018) Inland advance of supraglacial lakes in north-west Greenland under recent climatic warming. Ann. Glaciol. (https://doi.org/10.1017/aog.2017.31)
Greenwood, SL, Clason, CC, Helanow, C and Margold, M (2016) Theoretical, contemporary observational and palaeo-perspectives on ice sheet hydrology: processes and products. Earth Sci. Rev., 155, 127 (https://doi.org/10.1016/j.earscirev.2016.01.010)
Hoffman, MJ, Catania, GA, Neumann, TA, Andrews, LC and Rumrill, JA (2011) Links between acceleration, melting, and supraglacial lake drainage of the western Greenland ice sheet. J. Geophys. Res.: Earth Surf., 116(F4) (https://doi.org/10.1029/2010JF001934)
Howat, IM, de la Peña, S, van Angelen, JH, Lenaerts, TM and van den Broeke, MR (2013) Brief communication: “expansion of meltwater lakes on the Greenland ice sheet”. Cryosphere, 7(1), 201204 (https://doi.org/10.5194/tc-7-201-2013)
Howat, IM, Negrete, A and Smith, BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8(4), 15091518 (https://doi.org/10.5194/tc-8-1509-2014)
Irvine-Fynn, TDL, Hodson, AJ, Moorman, BJ, Vatne, G and Hubbard, AL (2011) Polythermal glacier hydrology: a review. Rev. Geophys., 49, 137 (https://doi.org/10.1029/2010RG000350)
Johansson, AM, Jansson, P and Brown, IA (2013) Spatial and temporal variations in lakes on the Greenland ice sheet. J. Hydrol., 476, 314320 (https://doi.org/10.1016/j.jhydrol.2012.10.045)
Jolliffe, IT (2002) Principal component analysis. Springer, New York
Joughin, I and 5 others (2008) Seasonal speedup along the western flank of the Greenland ice sheet. Science, 320(5877), 781783 (https://doi.org/10.1126/science.1153288)
Joughin, I, Smith, BE, Howat, IM, Scambos, T and Moon, T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (https://doi.org/10.3189/002214310792447734)
Joughin, I and 9 others (2013) Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 7 11851192 (https://doi.org/10.5194/tc-7-1185-2013)
Joughin, I, Smith, BE, Howat, IM, Moon, T and Scambos, T (2016) A SAR record of early 21st century change in Greenland. J. Glaciol., 62(231), 6271 (https://doi.org/10.1017/jog.2016.10)
Koziol, C, Arnold, N, Pope, A and Colgan, W (2017) Quantifying supraglacial meltwater pathways in the Paakitsoq region, west Greenland. J. Glaciol., 63(239), 464476 (https://doi.org/10.1017/jog.2017.5)
Krawczynski, MJ, Behn, MD, Das, SB and Joughin, I (2009) Constraints on the lake volume required for hydro-fracture through ice sheets. Geophys. Res. Lett., 36(10) (https://doi.org/10.1029/2008GL036765)
Kulessa, B and 10 others (2017) Seismic evidence for complex sedimentary control of Greenland ice sheet flow. Sci. Adv., 3, 18 (https://doi.org/10.1126/sciadv.1603071)
Lampkin, DJ and VanderBerg, J (2011) A preliminary investigation of the influence of basal and surface topography on supraglacial lake distribution near Jakobshavn Isbrae, western Greenland. Hydrol. Process., 25, 33473355 (https://doi.org/10.1002/hyp.8170)
Leeson, AA and 7 others (2013) A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol., 59(218), 11791188 (https://doi.org/10.3189/2013JoG13J064)
Leeson, AA and 6 others (2015) Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Change, 5(1), 5155 (https://doi.org/10.1038/nclimate2463)
Liang, Y and 7 others (2012) A decadal investigation of supraglacial lakes in west Greenland using a fully automatic detection and tracking algorithm. Remote Sens. Environ., 123, 127138 (https://doi.org/10.1016/j.rse.2012.03.020)
Lüthje, M, Pedersen, LT, Reeh, N and Greuell, W (2006) Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol., 52(179), 608618 (https://doi.org/10.3189/172756506781828386)
Lüthi, MP and 7 others (2015) Heat sources within the Greenland ice sheet: dissipation, temperature, paleo-firn and cryo-hydrologic warming. Cryosphere, 9, 245253 (https://doi.org/10.5194/tc-9-245-2015)
Mayaud, JR, Banwell, AF, Arnold, NS and Willis, IC (2014) Modeling the response of subglacial drainage at Paakitsoq, west Greenland, to 21st century climate change. J. Geophys. Res.: Earth Surf., 119, 26192634 (https://doi.org/10.1002/2014JF003271)
Meierbachtol, T, Harper, J and Humphrey, N (2013) Basal drainage system response to increasing surface melt on the Greenland ice sheet. Science, 341(6147), 777779 (https://doi.org/10.1126/science.1235905)
Miles, KE, Willis, IC, Benedek, CL, Williamson, AG and Tedesco, M (2017) Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery. Front. Earth Sci., 5(58), 117 (https://doi.org/10.3389/feart.2017.00058)
Morlighem, M, Rignot, E, Mouginot, J, Seroussi, H and Larour, E (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci., 7, 418422 (https://doi.org/10.1038/ngeo2167)
Morlighem, M and 31 others (2017) Bedmachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 11,05111,061 (https://doi.org/10.1002/2017GL074954)
Morriss, BF and 7 others (2013) A ten-year record of supraglacial lake evolution and rapid drainage in west Greenland using an automated processing algorithm for multispectral imagery. Cryosphere, 7(6), 18691877 (https://doi.org/10.5194/tc-7-1869-2013)
Nienow, PW, Sole, AJ, Slater, DA and Cowton, TR (2017) Recent advances in our understanding of the role of meltwater in the Greenland ice sheet system. Curr. Clim. Change Rep., 3 (https://doi.org/10.1007/s40641-017-0083-9)
Noël, B and 6 others (2016) A daily, 1-km resolution data set of downscaled Greenland ice sheet mass balance (1958–2015). Cryosphere, 10, 23612377 (https://doi.org/10.5194/tc-10-2361-2016)
Palmer, S, Shepherd, A, Nienow, P and Joughin, I (2011) Seasonal speedup of the Greenland ice sheet linked to routing of surface water. Earth Planet. Sci. Lett., 302, 423428 (https://doi.org/10.1016/j.epsl.2010.12.037)
Phillips, T, Rajaram, H and Steffen, K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37(20) (https://doi.org/10.1029/2010GL044397)
Phillips, T, Rajaram, H, Colgan, W, Steffen, K and Abdalati, W (2013) Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, west Greenland. J. Geophys. Res.: Earth Surf., 118(3), 12411256 (https://doi.org/10.1002/jgrf.20079)
Poinar, K and 5 others (2015) Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett., 42(6), 18001807 (https://doi.org/10.1002/2015GL063192)
Poinar, K, Joughin, I, Lenaerts, JTM and van den Broeke, MR (2017) Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland. J. Glaciol., 63(237), 116 (https://doi.org/10.1017/jog.2016.103)
Pope, A and Rees, WG (2014a) Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens. Environ., 141, 113 (https://doi.org/10.1016/j.rse.2013.08.028)
Pope, A and Rees, G (2014b) Using in situ spectra to explore Landsat classification of glacier surfaces. Int. J. Appl. Earth Obs. Geoinf., 27, 4252 (https://doi.org/10.1016/j.jag.2013.08.007)
Pope, A and 6 others (2016) Estimating supraglacial lake depth in west Greenland using Landsat 8 and comparison with other multispectral sensors. Cryosphere, 10, 1527 (https://doi.org/10.5194/tc-10-15-2016)
Ringnér, M (2008) What is principal component analysis? Nat. Biotechnol., 26(3), 303304 (https://doi.org/10.1038/nbt0308-303)
Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (https://doi.org/10.1038/nature09618)
Selmes, N, Murray, T and James, TD (2011) Fast draining lakes on the Greenland ice sheet. Geophys. Res. Lett., 38, L15501 (https://doi.org/10.1029/2011GL047872)
Selmes, N, Murray, T and James, TD (2013) Characterizing supraglacial lake drainage and freezing on the Greenland ice sheet. Cryos. Discuss., 7(1), 475505 (https://doi.org/10.5194/tcd-7-475-2013)
Sergienko, OV (2013) Glaciological twins: basally controlled subglacial and supraglacial lakes. J. Glaciol., 59(213), 38 (https://doi.org/10.3189/2013JoG12J040)
Shepherd, A and 5 others (2009) Greenland ice sheet motion coupled with daily melting in late summer. Geophys. Res. Lett., 36, L01501 (https://doi.org/10.1029/2008GL035758)
Sneed, WA and Hamilton, GS (2007) Evolution of melt pond volume on the surface of the Greenland ice sheet. Geophys. Res. Lett., 34, L03501 (https://doi.org/10.1029/2006GL028697)
Sole, A and 6 others (2013) Winter motion mediates dynamic response of the Greenland ice sheet to warmer summers. Geophys. Res. Lett., 40(15), 39403944 (https://doi.org/10.1002/grl.50764)
Stevens, LA and 7 others (2015) Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature, 522(7554), 7376 (https://doi.org/10.1038/nature14608)
Sundal, AV and 5 others (2009) Evolution of supra-glacial lakes across the Greenland ice sheet. Remote Sens. Environ., 113(10), 21642171 (https://doi.org/10.1016/j.rse.2009.05.018)
Sundal, AV and 5 others (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469(7331), 521524 (https://doi.org/10.1038/nature09740)
Tedesco, M and Steiner, S (2011) In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. Cryosphere, 5, 445452 (https://doi.org/10.5194/tc-5-445-2011)
Tedesco, M and 7 others (2012) Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland. Geophys. Res. Lett., 39(2), L02052 (https://doi.org/10.1029/2011GL049882)
Tedesco, M and 5 others (2013) Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett., 8(3), 034007 (https://doi.org/10.1088/1748-9326/8/3/034007)
Tedstone, AJ, Nienow, PW, Gourmelen, N and Sole, AJ (2014) Greenland ice sheet annual motion insensitive to spatial variations in subglacial hydraulic structure. Geophys. Res. Lett., 41, 89108917 (https://doi.org/10.1002/2014GL062386)
Tedstone, AJ and 5 others (2015) Decadal slowdown of a land-terminating sector of the Greenland ice sheet despite warming. Nature, 526(7575), 692695 (https://doi.org/10.1038/nature15722)
Tsai, VC and Rice, JR (2010) A model for turbulent hydraulic fracture and application to crack propagation at glacier beds. J. Geophys. Res.: Earth Surf., 115, F03007 (https://doi.org/10.1029/2009jf001474)
Tukey, JW (1977) Exploratory data analysis. Addison-Wesley, Reading, MA.
van de Wal, RSW and 6 others (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science, 321(5885), 111113 (https://doi.org/10.1126/science.1158540)
van den Broeke, MR, Enderlin, EM, Howat, IM and Noël, BP (2016) On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 10(5), 19331946 (https://doi.org/10.5194/tc-10-1933-2016)
van der Veen, CJ (2007) Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett., 34(1), L01501 (https://doi.org/10.1029/2006GL028385)
Vaughan, D (1993) Relating the occurrence of crevasses to surface strain rates. J. Glaciol., 39(132), 255266 (https://doi.org/10.1017/S0022143000015926)
Williamson, AG, Arnold, NS, Banwell, AF and Willis, IC (2017) A Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: development and application using MODIS imagery of west Greenland. Remote Sens. Environ., 196, 113133 (https://doi.org/10.1016/j.rse.2017.04.032)
Zwally, HJ and 5 others (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222 (https://doi.org/10.1126/science.1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Williamson et al. supplementary material
Williamson et al. supplementary material 1

 PDF (2.8 MB)
2.8 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed