Skip to main content
    • Aa
    • Aa

Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling


Understanding the drivers of recent change at Greenlandic tidewater glaciers is of great importance if we are to predict how these glaciers will respond to climatic warming. A poorly constrained component of tidewater glacier processes is the near-terminus subglacial hydrology. Here we present a novel method for constraining near-terminus subglacial hydrology with application to marine-terminating Kangiata Nunata Sermia in South-west Greenland. By simulating proglacial plume dynamics using buoyant plume theory and a general circulation model, we assess the critical subglacial discharge, if delivered through a single compact channel, required to generate a plume that reaches the fjord surface. We then compare catchment runoff to a time series of plume visibility acquired from a time-lapse camera. We identify extended periods throughout the 2009 melt season where catchment runoff significantly exceeds the discharge required for a plume to reach the fjord surface, yet we observe no plume. We attribute these observations to spatial spreading of runoff across the grounding line. Persistent distributed drainage near the terminus would lead to more spatially homogeneous submarine melting and may promote more rapid basal sliding during warmer summers, potentially providing a mechanism independent of ocean forcing for increases in atmospheric temperature to drive tidewater glacier acceleration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Donald Slater <>
Hide All
AP Ahlstrom and 13 others (2013) Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth Syst. Sci. Data, 5(2), 277287 (doi: 10.5194/essd-5-277-2013)

RB Alley , DD Blankenship , CR Bentley and ST Rooney (1986) Deformation of till beneath ice stream b, west Antarctica. Nature, 322(6074), 5759 (doi: 10.1038/322057a0)

TC Bartholomaus and 11 others (2016) Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in west Greenland. Ann. Glaciol., 57, 2538 (doi: 10.1017/aog.2016.19)

I Bartholomew and 5 others (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci., 3, 408411 (doi: 10.1038/ngeo863)

J Bendtsen , J Mortensen and K Lennert and S Rysgaard (2015) Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: the role of subglacial freshwater discharge. Geophys. Res. Lett., 42(10), 40894095 (doi: 10.1002/2015GL063846)

RJ Braithwaite (1995) Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol., 41(137), 153160 (doi: 10.3198/1995JoG41-137-153-160)

FM Campbell , PW Nienow and RS Purves (2006) Role of the supraglacial snowpack in mediating meltwater delivery to the glacier system as inferred from dye tracer investigations. Hydrol. Process., 20(4), 969985 (doi: 10.1002/hyp.6115)

D Carroll and 5 others (2015) Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr., 45(8), 21692185 (doi: 10.1175/JPO-D-15-0033.1)

D Carroll and 11 others (2016) The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett., 43(18), 97399748 (doi: 10.1002/2016GL070170)

C Cenedese and VM Gatto (2016) Impact of two plumes’ interaction on submarine melting of tidewater glaciers: a laboratory study. J. Phys. Oceanogr., 46(1), 361367 (doi: 10.1175/JPO-D-15-0171.1)

P Christoffersen and 7 others (2011) Warming of waters in an east Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 5(3), 701714 (doi: 10.5194/tc-5-701-2011)

T Cowton , P Nienow , I Bartholomew , A Sole and D Mair (2012) Rapid erosion beneath the Greenland ice sheet. Geology, 40(4), 343346 (doi: 10.1130/G32687.1)

T Cowton and 7 others (2013) Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res.: Earth Surf., 118(1), 2941 (doi: 10.1029/2012JF002540)

T Cowton , D Slater , A Sole , D Goldberg and P Nienow (2015) Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res.: Oceans, 120(2), 796812 (doi: 10.1002/2014JC010324)

EM Enderlin and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866872 (doi: 10.1002/2013GL059010)

M Fahnestock and 5 others (2015) Rapid large-area mapping of ice flow using landsat 8. Remote Sens. Environ., 185, 8494 (doi: 10.1016/j.rse.2015.11.023)

X Fettweis , G Mabille , M Erpicum , S Nicolay and M Van den Broeke (2011) The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation. Clim. Dyn., 36(1), 139159 (doi: 10.1007/s00382-010-0772-8)

AG Fountain and JS Walder (1998) Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328 (doi: 10.1029/97RG03579)

AC Fowler (1987) Sliding with cavity formation. J. Glaciol., 33(115), 255267 (doi: 10.3198/1987JoG33-115-255-267)

MJ Fried and 8 others (2015) Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42(21), 93289336 (doi: 10.1002/2015GL065806)

R Hock (2003) Temperature index modelling in mountain areas. J. Hydrol., 282, 104115 (doi: 10.1016/S0022-1694(03)00257-9)

DM Holland and A Jenkins (1999) Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29(8), 17871800 (doi: 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2)

DM Holland , RH Thomas , B de Young , MH Ribergaard and B Lyberth (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)

IM Howat , JE Box , Y Ahn , A Herrington and EM McFadden (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)

IM Howat , A Negrete and BE Smith (2014) The Greenland ice mapping project (gimp) land classification and surface elevation data sets. Cryosphere, 8(4), 15091518 (doi: 10.5194/tc-8-1509-2014)

A Iken and RA Bindschadler (1986) Combined measurements of subglacial water pressure and surface velocity of findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119 (doi: 10.3198/1986JoG32-110-101-119)

A Jenkins (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 22792294 (doi: 10.1175/JPO-D-11-03.1)

I Joughin and 5 others (2008) Seasonal speedup along the western flank of the Greenland ice sheet. Science, 320(5877), 781783 (doi: 10.1126/science.1153288)

I Joughin , BE Smith , IM Howat , T Scambos and T Moon (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)

B Kamb (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)

S Kimura , PR Holland , A Jenkins and M Piggot (2014) The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr., 44(12), 30993117 (doi: 10.1175/JPO-D-13-0219.1)

KK Kjeldsen and 5 others (2014) Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. J. Geophys. Res.: Earth Surf., 119(6), 13101321 (doi: 10.1002/2013JF003034)

PL Langen and 13 others (2015) Quantifying energy and mass fluxes controlling godthabsfjord freshwater input in a 5-km simulation (1991–2012). J. Clim., 28(9), 36943713 (doi: 10.1175/JCLI-D-14-00271.1)

JM Lea and 7 others (2014) Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of kangiata nunaata sermia, 1859-present. Cryosphere, 8(6), 20312045 (doi: 10.5194/tc-8-2031-2014)

F Lefebre , H Gallee , JP van Ypersele and W Greuell (2003) Modeling of snow and ice melt at eth camp (west Greenland): a study of surface albedo. J. Geophys. Res., 108(D8) (doi: 10.1029/2001JD001160)

J Marshall , A Adcroft , C Hill , L Perelman and C Heisey (1997a) A finite-volume, incompressible Navier stokes model for studies of the ocean on parallel computers. J. Geophys. Res.: Oceans, 102(C3), 57535766 (doi: 10.1029/96JC02775)

J Marshall , C Hill , L Perelman and A Adcroft (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res.: Oceans, 102(C3), 57335752 (doi: 10.1029/96JC02776)

M Meier and 9 others (1994) Mechanical and hydrological basis for the rapid motion of a large tidewater glacier 1. Observations. J. Geophys. Res., 99(B8), 1521915229 (doi: 10.1029/94JB00237)

T Moon , I Joughin , B Smith and I Howat (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336(6081), 576578 (doi: 10.1126/science.1219985)

T Moon and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41(20), 72097216 (doi: 10.1002/2014GL061836)

M Morlighem , E Rignot , J Mouginot , H Seroussi and E Larour (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci., 7, 418422 (doi: 10.1038/ngeo2167)

J Mortensen , K Lennert , J Bendtsen and S Rysgaard (2011) Heat sources for glacial melt in a sub-arctic fjord (godthabsfjord) in contact with the Greenland ice sheet. J. Geophys. Res.: Oceans, 116(C1) (doi: 10.1029/2010JC006528)

J Mortensen and 6 others (2013) On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-arctic sill fjord. J. Geophys. Res.: Oceans, 118(3), 13821395 (doi: 10.1002/jgrc.20134)

J Mortensen , J Bendtsen and K Lennert and S Rysgaard (2014) Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, godthabsfjord (64n). J. Geophys. Res.: Earth Surf., 119(12), 25912603 (doi: 10.1002/2014JF003267)

B Morton , G Taylor and J Turner (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci., 234(1196), 123 (doi: 10.1098/rspa.1956.0011)

RJ Motyka , L Hunter , KA Echelmeyer and C Connor (2003) Submarine melting at the terminus of a temperate tidewater glacier, leconte glacier, Alaska, USA. Annals of Glaciology, 36(1), 5765 (doi: 10.3189/172756403781816374)

RJ Motyka , WP Dryer , J Amundson , M Truffer and M Fahnestock (2013) Rapid submarine melting driven by subglacial discharge, LeConte glacier, Alaska. Geophys. Res. Lett., 40(19), 51535158 (doi: 10.1002/grl.51011)

WT Pfeffer (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3) (doi: 10.1029/2006JF000590)

HD Pritchard , RJ Arthern , DG Vaughan and LA Edwards (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)

E Rignot and P Kanagaratnam (2006) Changes in the velocity structure of the Greenland ice sheet. Science, 311(5763), 986990 (doi: 10.1126/science.1121381)

E Rignot , I Fenty , Y Xu , C Cai and C Kemp (2015) Undercutting of marine-terminating glaciers in west Greenland. Geophys. Res. Lett., 42(14), 59095917 (doi: 10.1002/2015GL064236)

KM Schild , RL Hawley and BF Morriss (2016) Subglacial hydrology at rink isbrae, west Greenland inferred from sediment plume appearance. Ann. Glaciol., 57, 118127 (doi: 10.1017/aog.2016.1)

C Schoof (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/nature09618)

R Sciascia , F Straneo , C Cenedese and P Heimbach (2013) Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res.: Oceans, 118(5), 24922506 (doi: 10.1002/jgrc.20142)

DN Shapero , IR Joughin , K Poinar , M Morlighem and F Gillet-Chaulet (2016) Basal resistance for three of the largest Greenland outlet glaciers. J. Geophys. Res.: Earth Surf., 121(1), 168180

RL Shreve (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214 (doi: 10.3198/1972JoG11-62-205-214)

DA Slater , PW Nienow , TR Cowton , DN Goldberg and AJ Sole (2015) Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42(8), 28612868 (doi: 10.1002/2014GL062494)

DA Slater , DN Goldberg , PW Nienow and TR Cowton (2016) Scalings for submarine melting at tidewater glaciers from buoyant plume theory. J. Phys. Oceanogr., 46(6), 18391855 (doi: 10.1175/JPO-D-15-0132.1)

AJ Sole and 6 others (2011) Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt induced changes in subglacial hydrology. J. Geophys. Res.: Earth Surf., 116(F3) (doi: 10.1029/2010JF001948)

LA Stevens and 5 others (2016) Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. Cryosphere, 10(1), 417432 (doi: 10.5194/tc-10-417-2016)

F Straneo and C Cenedese (2015) The dynamics of Greenland's glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7(1), 89112 (doi: 10.1146/annurev-marine-010213-135133)

F Straneo and P Heimbach (2013) North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504, 3643 (doi: 10.1038/nature12854)

F Straneo and 7 others (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nat. Geosci., 3(3), 182186 (doi: 10.1038/ngeo764)

AJ Tedstone and NS Arnold (2012) Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet. J. Glaciol., 58(210), 699712 (doi: 10.3189/2012JoG11J204)

R Thomas , E Frederick , W Krabill , S Manizade and C Martin (2009) Recent changes on Greenland outlet glaciers. J. Glaciol., 55(189), 147162 (doi: 10.3189/002214309788608958)

JS Turner (1973) Buoyancy effects in fluids. Cambridge University Press

M van den Broeke and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)

A Vieli , J Jania , H Blatter and M Funk (2004) Short-term velocity variations on hansbreen, a tidewater glacier in spitsbergen. J. Glaciol., 50(170), 389398 (doi: 10.3189/172756504781829963)

JS Walder and A Fowler (1994) Channelized subglacial drainage over a deformable bed. J. Glaciol., 40(134), 315 (doi: 10.3198/1994JoG40-134-3-15)

F Walter , J Chaput and MP Luthi (2014) Thick sediments beneath Greenland's ablation zone and their potential role in future ice sheet dynamics. Geology, 42(6), 487490 (doi: 10.1130/G35492.1)

Y Xu , E Rignot , I Fenty , D Menemenlis and MM Flexas (2013) Subaqueous melting of store glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40(17), 46484653 (doi: 10.1002/grl.50825)

Z Zuo and J Oerlemans (1996) Modelling albedo and specific mass balance of the Greenland ice sheet: calculations for the sondre stromfjord transect. J. Glaciol., 42(141), 305317 (doi: 10.3198/1996JoG42-141-305-317)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 63
Total number of PDF views: 324 *
Loading metrics...

Abstract views

Total abstract views: 731 *
Loading metrics...

* Views captured on Cambridge Core between 19th January 2017 - 18th October 2017. This data will be updated every 24 hours.