Skip to main content
×
×
Home

Dynamic modelling of future glacier changes: mass-balance/elevation feedback in projections for the Vestfonna ice cap, Nordaustlandet, Svalbard

  • M. Schäfer (a1) (a2), M. Möller (a3), T. Zwinger (a4) and J.C. Moore (a1) (a5)
Abstract

Future projections of the evolution of ice caps as well as ice sheets and consequent sea-level rise face several methodological challenges, one being the two-way coupling between ice flow and mass-balance models. Full two-way coupling between mass-balance models – or, in a wider scope, climate models – and ice flow models has rarely been implemented due to substantial technical challenges. Here we examine some coupling effects for the Vestfonna ice cap, Nordaustlandet, Svalbard, by analysing the impacts of different coupling intervals on mass-balance and sea-level rise projections. By comparing coupled to traditionally deployed uncoupled strategies, we prove that neglecting the topographic feedbacks in the coupling leads to underestimations of 10–20% in sea-level rise projections on century timescales in our model. As imposed climate scenarios increasingly change mass balance, uncertainties in the unknown evolution of the fast-flowing outlet glaciers decrease in importance due to their deceleration and reduced mass flux as they thin and retreat from the coast. Parameterizing mass-balance adjustment for changes in topography using lapse rates as a cost-effective alternative to full coupling produces satisfactory results for modest climate change scenarios. We introduce a method to estimate the error of the presented partially coupled model with respect to as yet unperformed two-way fully coupled results.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic modelling of future glacier changes: mass-balance/elevation feedback in projections for the Vestfonna ice cap, Nordaustlandet, Svalbard
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamic modelling of future glacier changes: mass-balance/elevation feedback in projections for the Vestfonna ice cap, Nordaustlandet, Svalbard
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamic modelling of future glacier changes: mass-balance/elevation feedback in projections for the Vestfonna ice cap, Nordaustlandet, Svalbard
      Available formats
      ×
Copyright
Corresponding author
Correspondence: M. Schäfer <smartina.ac@gmx.de>; M. MMöllerller <marco.moeller@geo.rwth-aachen.de>
Footnotes
Hide All
*

The first two authors contributed equally to this work.

Footnotes
References
Hide All
Arthern, RJ and Gudmundsson, GH (2010) Initialization of ice-sheet forecasts viewed as an inverse Robin problem. J. Glaciol., 56(197), 527533 (doi: 10.3189/002214310792447699)
Åström, J and 10 others (2014) Termini of calving glaciers as self-organised critical systems. Nature Geosci., 7, 874878 (doi: 10.1038/ngeo2290)
Beaudon, E and 7 others (2011) Spatial and temporal variability of net accumulation from shallow cores from Vestfonna ice cap (Nordaustlandet, Svalbard). Geogr. Ann. A, 93(4), 287299 (doi: 10.1111/j.1468-0459.2011.00439.x)
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82, 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Bindschadler, R and 27 others (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol., 59(214), 195224 (doi: 10.3189/2013JoG12J125)
Błaszczyk, M, Jania, JA and Hagen, JO (2009) Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Pol. Polar Res, 30(2), 85142
Braun, M and 7 others (2011) Changes of glacier frontal positions of Vestfonna (Nordaustlandet, Svalbard). Geogr. Ann. A, 93(4), 301310 (doi: 10.1111/j.1468-0459.2011.00437.x)
Church, JA and 13 others (2013) Sea level change. In Stocker, TF and 9 others eds Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
Cogley, JG and 10 others (2011) Glossary of glacier mass balance and related terms. (IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2) UNESCO–International Hydrological Programme, Paris
Cook, S and 7 others (2014) Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere, 8(3), 827841 (doi: 10.5194/tc-8-827-2014)
Driesschaert, E and 8 others (2007) Modeling the influence of Greenland ice sheet melting on the Atlantic meridional over-turning circulation during the next millennia. Geophys. Res. Lett., 34, L10707 (doi: 10.1002/9781118782033.ch36)
Dunse, T, Schuler, TV, Hagen, JO and Reijmer, CH (2012) Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. Cryosphere, 6, 453466 (doi: 10.5194/tc-6-453-2012)
Edwards, TL and 12 others (2014a) Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet. Cryosphere, 8(1), 181194 (doi: 10.5194/tc-8-181-2014)
Edwards, TL and 12 others (2014b) Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere, 8(1), 195208 (doi: 10.5194/tc-8-195-2014)
Frey, PJ (2001) YAMS: a fully automatic adaptive isotropic surface remeshing procedure. (Rapp. tech. 0252) Institut National de Recherche en Information et en Automatique (INRIA), Bordeaux
Gagliardini, O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new generation ice-sheet model. Geosci. Model Dev. Discuss., 6(1), 16891741 (doi: 10.5194/gmdd-6-1689-2013)
Geuzaine, C and Remacle, JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Num. Meth. Eng., 79(11), 13091331 (doi: 10.1002/nme.2579)
Glen, JW (1952) Experiments on the deformation of ice. J. Glaciol., 2(12), 111114
Goelzer, H and others (2013) Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol., 59, 733749 (doi: 10.3189/2013JoG12J182)
Greve, R (1995) Thermomechanisches Verhalten polythermer Eisschilde – Theorie, Analytik, Numerik. (Doctoral thesis, Darmstadt University of Technology) Berichte aus der Geowissenschaft, Shaker Verlag, Aachen
Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin
Helsen, MM, Van de Wal, RSW, Van den Broeke, MR, Van de Berg, WJ and Oerlemans, J (2012) Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland ice sheet. Cryosphere, 6(2), 255272 (doi: 10.5194/tc-6-255-2012)
Helsen, MM, Van de Berg, WJ, Van de Wal, RSW, Van den Broeke, MR and Oerlemans, J (2013) Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian. Climate Past, 9(4), 17731788 (doi: 10.5194/cp-9-1773-2013)
Huth, R (1999) Statistical downscaling in central Europe: evaluation of methods and potential predictors. Climate Res., 13, 91101 (doi: 10.1002/joc.1122)
Jakobsson, M and 6 others (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602 (doi: 10.1029/2008GL033520)
Karl, TR, Wang, WC, Schlesinger, ME, Knight, RW and Portman, D (1990) A method of relating general circulation model simulated climate to observed local climate part I: Seasonal statistics. J. Climate, 3(10), 10531079 (doi: 10.1175/1520-0442(1990) 003<1053:AMORGC>2.0.CO;2)
Mikolajewicz, U, Vizcaino, M, Jungclaus, J and Schurgers, G (2007) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys. Res. Lett., 34, L18706 (doi: 10.1029/ 2007GL031173)
Moholdt, G, Hagen, JO, Eiken, T and Schuler, TV (2010a) Geometric changes and mass balance of the Austfonna ice cap, Svalbard. Cryosphere, 4(1), 2134 (doi: 10.5194/tc-4-21-2010)
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010b) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ, 114(11), 27562767 (doi: 10.1016/j.rse.2010.06.008)
Möller, M (2012) A minimal, statistical model for the surface albedo of Vestfonna ice cap, Svalbard. Cryosphere, 6(5), 10491061 (doi: 10.5194/tc-6-1049-2012)
Möller, M and Schneider, C (2008) Climate sensitivity and mass-balance evolution of Gran Campo Nevado ice cap, southwest Patagonia. Ann. Glaciol, 48, 3242 (doi: 10.3189/172756408784700626)
Möller, M and Schneider, C (2015) Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard). Sci. Rep., 5, 8079 (doi: 10.1038/ srep08079)
Möller, M, Schneider, C and Kilian, R (2007) Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Ann. Glaciol, 46, 136144 (doi: 10.3189/172756407782871530)
Möller, M and 7 others (2011a) Climatic mass balance of the ice cap Vestfonna, Svalbard: a spatially distributed assessment using ERA-Interim and MODIS data. J. Geophys. Res., 116, F03009 (doi: 10.1029/2010JF001905)
Möller, M and 11 others (2011b) Snowpack characteristics of Vestfonna and Degeerfonna (Nordaustlandet, Svalbard) – a spatiotemporal analysis based on multiyear snow-pit data. Geogr. Ann. A, 93(4), 273285 (doi: 10.1111/j.1468-0459.2011.00440.x)
Möller, M, Finkelnburg, R, Braun, M, Scherer, D and Schneider, C (2013) Variability of the climatic mass balance of Vestfonna ice cap (northeastern Svalbard), 1979–2011. Ann. Glaciol, 54(63), 254264 (doi: 10.3189/2013AoG63A407)
Moore, JC, Jevrejeva, S and Grinsted, A (2011) The historical global sea level budget. Ann. Glaciol., 52(59), 814 (doi: 10.3189/172756411799096196)
Moore, JC, Grinsted, A, Zwinger, T and Jevrejeva, S (2013) Semiempirical and process-based global sea level projections. Rev. Geophys., 51(3), 484522 (doi: 10.1002/rog.20015)
Moss, RH and others (2010) The next generation of scenarios for climate change research and assessment. Nature, 463, 747756 (doi: 10.1038/nature08823)
Nuth, C, Moholdt, G, Kohler, J, Hagen, JO and Kaab, A (2010) Svalbard glacier elevation changes and contribution to sea level rise. J. Geophys. Res.: Earth, 115 (doi: 10.1029/2008JF001223)
Nye, JF (1952) The mechanics of glacier flow. J. Glaciol., 2(12), 8293
Petterson, R, Christoffersen, P, Dowdeswell, JA, Pohjola, VA, Hubbard, A and Strozzi, T (2011) Ice thickness and basal conditions of Vestfonna ice cap, eastern Svalbard. Geogr. Ann. A, 93(4), 311322 (doi: 10.1111/j.1468-0459.2011.00438.x)
Pohjola, VA and 6 others (2011) Spatial distribution and change in the surface ice-velocity field of Vestfonna ice cap, Nordaustlandet, Svalbard, 1995–2010 using geodetic and satellite interferometry data. Geogr. Ann. A, 93(4), 323335 (doi: 10.1111/j.1468-0459.2011.00441.x)
Reeh, N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59(3), 113128
Ridley, JK, Huybrechts, P, Gregory, JM and Lowe, JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J. Climate, 8, 34093427 (doi: 10.1175/JCLI3482.1)
Rignot, E, Velicogna, I, Van den Broeke, MR, Monaghan, A and Lenaerts, J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503 (doi: 10.1029/2011GL046583)
Sauter, T, Möller, M, Finkelnburg, R, Grabiec, M, Scherer, D and Schneider, C (2013) Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard. Cryosphere, 7(4), 12871301 (doi: 10.5194/tc-7-1287-2013)
Schäfer, M and 8 others (2012) Sensitivity of basal conditions in an inverse model: Vestfonna ice cap, Nordaustlandet/Svalbard. Cryosphere, 6(4), 771783 (doi: 10.5194/tc-6-771-2012)
Schäfer, M and 6 others (2014) Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard. Cryosphere, 8(5), 19511973 (doi: 10.5194/tc-8-1951-2014)
Shepard, D (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference. Association for Computing Machinery, New York, 517524 (doi: 10.1145/800186.810616)
Shepherd, A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Skamarock, W and 7 others (2008) A description of the advanced research WRF version 3. (NCAR Technical Note) National Center for Atmospheric Research, Boulder, CO (doi: 10.5065/ D68S4MVH)
Swingedouw, D, Fichefet, T, Huybrechts, P, Goosse, H, Driesschaert, E and Loutre, MF (2008) Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys. Res. Lett., 35, L17705 (doi: 10.1029/2008GL034410)
Van Pelt, WJJ, Oerlemans, J, Reijmer, CH, Pohjola, VA, Pettersson, R and Van Angelen, JH (2012) Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. Cryosphere, 6(3), 641659 (doi: 10.5194/tc-6-641-2012)
Vizcaino, M, Mikolajewicz, U, Jungclaus, J and Schurgers, G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dyn., 34, 301324 (doi: 10.1007/s00382-009-0591-y)
Von Storch, H (1999) On the use of ‘inflation’ in statistical downscaling. J. Climate, 12, 35053506 (doi: 10.1175/1520-0442(1999)012<3505:OTUOII>2.0.CO;2)
Watanabe, S and 15 others (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20C3M experiments. Geosci. Model Dev., 4(4), 845872 (doi: 10.5194/gmd-4-845-2011)
Widmann, M, Bretherton, CS and Salathé, EP Jr (2003) Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16(5), 799816 (doi: 10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed