Skip to main content
×
×
Home

Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach

  • MARIA-GEMA LLORENS (a1) (a2), ALBERT GRIERA (a3), PAUL D. BONS (a1), JENS ROESSIGER (a1), RICARDO LEBENSOHN (a4), LYNN EVANS (a5) and ILKA WEIKUSAT (a1) (a2)...
Abstract
ABSTRACT

Results of numerical simulations of co-axial deformation of pure ice up to high-strain, combining full-field modelling with recrystallisation are presented. Grain size and lattice preferred orientation analysis and comparisons between simulations at different strain-rates show how recrystallisation has a major effect on the microstructure, developing larger and equi-dimensional grains, but a relatively minor effect on the development of a preferred orientation of c-axes. Although c-axis distributions do not vary much, recrystallisation appears to have a distinct effect on the relative activities of slip systems, activating the pyramidal slip system and affecting the distribution of a-axes. The simulations reveal that the survival probability of individual grains is strongly related to the initial grain size, but only weakly dependent on hard or soft orientations with respect to the flow field. Dynamic recrystallisation reduces initial hardening, which is followed by a steady state characteristic of pure-shear deformation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Maria-Gema Llorens <maria-gema.llorens-verde@uni-tuebingen.de>
References
Hide All
Alley RB (1988) Fabrics in polar ice sheets: development and prediction. Science, 240(4851), 493495 (doi: 10.1126/science.240.4851.493)
Alley RB (1992) Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245256
Alley RB, Gow AJ, Meese DA (1995) Mapping c-axis fabrics to study physical processes in ice. J. Glaciol., 41(137), 197203
Azuma N (1994) A flow law for anisotropic ice and its application to ice sheets. Earth Planet. Sci. Lett., 128(3), 601614 (doi: 10.1016/0012-821X(94)90173-2)
Azuma N and Higashi A (1985) Formation processes of ice fabric pattern in ice sheets. Ann. Glaciol., 6, 130134
Azuma N and 6 others (1999) Textures and fabrics in the Dome F (Antarctica) ice core. Ann. Glaciol., 29, 163168 (doi: 10.3189/172756499781821148)
Azuma N, Miyakoshi T, Yokoyama S and Takata M (2012) Impeding effect of air bubbles on normal grain growth of ice. J. Struct. Geol., 42, 184193 (doi: 10.1016/ j.jsg.2012.05.005)
Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos. Mag., 21(170), 399424
Ashby MF and Duval P (1985) The creep of polycrystalline ice. Cold Regions Sci. Technol., 11(3), 285300 (doi: 10.1016/ 0165-232X(85)90052-7)
Bachmann F, Hielscher R and Schaeben H (2010) Texture analysis with MTEX – free and open source software toolbox. Solid State Phenom., 160, 6368 (doi: 10.4028/www.scientific.net/SSP.160.63)
Becker R (1991) Analysis of texture evolution in channel die compression. 1. Effects of grain interaction. Acta Metall. Mater., 39(6), 12111230 (doi: 10.1016/0956-7151(91)90209-J)
Becker JK, Bons PD and Jessell MW (2008) A new front-tracking method to model anisotropic grain and phase boundary motion in rocks. Comput. Geosci., 34(3), 201212 (doi: 10.1016/j.cageo.2007.03.013)
Bons PD, Koehn D and Jessell MW (2008) Lecture notes in earth sciences. In Bons P, Koehn D and Jessell M eds. Microdynamic simulation. Springer, Berlin, number 106. 405
Borthwick VE and Piazolo S (2010) Complex temperature dependent behaviour revealed by in-situ heating experiments on single crystals of deformed halite: New ways to recognize and evaluate annealing in geological materials. J. Struct. Geol., 32, 982996 (doi: 10.1016/j.jsg.2010.06.006)
Borthwick VE, Piazolo S, Evans L, Griera A and Bons PD (2013) What happens to deformed rocks after deformation? A refined model for recovery based on numerical simulations. Geol. Soc. London Spec. Publ., 394(1), 215534 (doi: 10.1144/SP394.11)
Brinckmann S, Siegmund T and Huang Y (2006) A dislocation density based strain gradient model. Int. J. Plast., 22(9), 17841797 (doi: 10.1016/ j.ijplas.2006.01.005)
Budd W and Jacka T (1989) A review of ice rheology for ice sheet modelling. Cold Regions Sci. Technol., 16(2), 107144 (doi: 10.1016/0165-232X(89)90014-1)
Budd WF, Warner RC, Jacka TH, Li J and Treverrow A (2013) Ice flow relations for stress and strain-rate components from combined shear and compression laboratory experiments. J. Glaciol., 59(214), 374392 (doi: 10.3189/ 2013JoG12J106)
Castelnau O, Duval P, Lebensohn RA and Canova GR (1996) Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: Comparison with bound estimates. J. Geophys. Res.: Solid Earth (1978–2012) , 101(B6), 1385113868 (doi: 10.1029/96JB00412)
Cottrell AH (1953) Theory of dislocations. Prog. Met. Phys., 4, 205264 (doi: 10.1016/ 0502-8205(49)90004-0)
Cuffey KM and Kavanaugh JL (2011) How nonlinear is the creep deformation of polar ice? A new field assessment. Geology, 39(11), 10271030 (doi: 10.1130/G32259.1)
De La Chapelle S, Castelnau O, Lipenkov V and Duval P (1998) Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J. Geophys. Res.: Solid Earth (1978–2012) , 103(B3), 50915105 (doi: 10.1029/97JB02621)
Delannay L, Logé RE, Chastel Y, Signorelli JW and Van Houtte P (2003) Measurement of in-grain orientation gradients by EBSD and comparison with finite element results. Adv. Eng. Mater., 5(8), 597600 (doi: 10.1002/adem.200300376)
DiPrinzio CL and 5 others (2005) Fabric and texture at Siple Dome, Antarctica. J. Glaciol., 51(173), 281290 (doi: 10.3189/172756505781829359)
Diard M and 6 others (2006) The heterogeneous nature of slip in ice single crystals deformed under torsion. Philos. Mag., 86(27), 42594270
Diard O, Leclercq S, Rousselier G and Cailletaud G (2005) Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity. Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int. J. Plast., 21(4), 691722 (doi: 10.1016/j.ijplas.2004.05.017)
Drury MR and Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics, 172(3), 235253 (doi: 10.1016/0040-1951(90)90033-5)
Durand G (2004) Microstructure, recristallisation et deformation des glaces polaires de la carotte EPICA. (Thèse de doctorat, Dôme Concordia, Antartique)
Durand G and 5 others (2006) Ice microstructure and fabric: an up to date approach to measure textures. J. Glaciol., 52(179), 619630 (doi: 10.3189/172756506781828377)
Durand G, Persson A, Samyn D, and Svensson A (2008) Relation between neighbouring grains in the upper part of the NorthGRIP ice core—Implications for rotation recrystallization. Earth Planet. Sci. Lett., 265(3), 666671 (doi: 10.1016/j.epsl.2007.11.002)
Duval P and Castelnau O (1995) Dynamic recrystallization of ice in polar ice sheets. J. Phys. IV, 5(C3), C3197 (doi: 10.1051/jp4:1995317)
Duval P, Ashby M and Anderman I (1983) Rate controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87(21), 40664074 (doi: 10.1021/ j100244a014)
Duval P, Arnaud L, Brissaud O, Montagnat M, and de La Chapelle S (2000) Deformation and recrystallization processes of ice from polar ice sheets. Ann. Glaciol., 30(1), 8387 (doi: 10.3189/172756400781820688)
Erb U, and Gleiter H (1979) The effect of temperature on the energy and structure of grain boundaries. Scripta Metall., 13.1, 6164 (doi: 10.1016/0036-9748(79)90390-9)
Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, A241, 376396 (doi: 10.1098/rspa.1957.0133)
Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. London, 252(1271), 561569 (doi: 10.1098/rspa.1959.0173)
Estrin Y and Kim HS (2007) Modelling microstructure evolution toward ultrafine crystallinity produced by severe plastic deformation. J. Mater. Sci., 42(5), 15121516 (doi: 10.1007/s10853-006-1260-8)
Faria SH, Weikusat I and Azuma N (2014a) The microstructure of polar ice. Part I: highlights from ice core research. J. Struct. Geol., 61, 2149 (doi: 10.1016/j.jsg.2013.09.010)
Faria SH, Weikusat I and Azuma N (2014b) The microstructure of polar ice. Part II: state of the art. J. Struct. Geol, 61, 2149 (doi: 10.1016/j.jsg.2013.11.003)
Faria SH, Kipfstuhl S and Lambrecht A (2014c) The EPICA-DML deep ice core. Springer, Heidelberg
Fitzpatrick JJ and 11 others (2014) Physical properties of the WAIS divide ice core. J. Glaciol., 60(224), 11811198 (doi: 10.3189/2014JoG14J100)
Fleck NA and Hutchinson JW (1997) Strain gradient plasticity. Adv. Appl. Mech., 33, 295361 (doi: 10.1016/S0065-2156(08)70388-0)
Gagliardini O, Durand G and Wang Y (2004) Grain area as a statistical weight for polycrystal constituents. J. Glaciol., 50(168), 8795 (doi: 10.3189/172756504781830349)
Gao H, Huang Y, Nix WD and Hutchinson JW (1999) Mechanism-based strain gradient plasticity – I. theory. J. Mech. Phys. Solids, 47(6), 12391263 (doi: 10.1016/ S0022-5096(98)00103-3)
Gillet-Chaulet F, Hindmarsh RC, Corr HF, King EC and Jenkins A (2011) In-situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar. Geophys. Res. Lett., 38(24), L24503 (doi: 10.1029/2011GL049843)
Glen JW (1955) The creep of polycrystalline ice. Proc. R. Soc. A: Math. Phys. Eng. Sci., 228, 519538 (doi: 10.1098/rspa.1955.0066)
Glen JW (1958) The flow law of ice: a discussion of the assumptions made in glacier theory, their experimental foundations and consequences. IASH Publ., 47, 171183
Goldsby DL and Kohlstedt DL (2001) Superplastic deformation of ice: experimental observations. J. Geophys. Res.: Solid Earth (1978–2012) , 106(B6), 1101711030 (doi: 10.1029/2000JB900336)
Gottstein G and Mecking H (1985) Recrystallization. Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis, ed. HR Wenk 183218 (doi: 10.1016/B978-0-12-744020-0.50014-6)
Griera A and 5 others (2011) Strain localization and porphyroclast rotation. Geology, 39, 275278 (doi: 10.1130/G31549.1)
Griera A and 6 others (2013) Numerical modelling of porphyroclast and porphyroblast rotation in anisotropic rocks. Tectonophysics, 587, 429 (doi: 10.1130/G31549.1)
Gudmundson P (2004) A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids, 52(6), 13791406 (doi: 10.1016/j.jmps.2003.11.002)
Hamann I, Weikusat C, Azuma N and Kipfstuhl S (2007) Evolution of ice crystal microstructure during creep experiments. J. Glaciol., 53(182), 479489 (doi: 10.3189/002214307783258341)
Huybrechts P, Rybak O, Pattyn F, Ruth U and Steinhage D (2007) Ice thinning, upstream advection, and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Clim. Past Discuss., 3(3), 693727 (doi: 10.5194/cpd-3-693-2007)
Idiart MI, Moulinec H, Ponte Castaneda P and Suquet P (2006) Macroscopic behavior and field fluctuations in viscoplastic composites: second-order estimates versus full-field simulations. J. Mech. Phys. Solids, 54(5), 10291063 (doi: 10.1016/j.jmps.2005.11.004)
Jacka TH (1984) Laboratory studies on relationships between ice crystal size and flow rate. Cold Regions Sci. Technol., 10(1), 3142 (doi: 10.1016/0165-232X(84)90031-4)
Jacka TH and Maccagnan M (1984) Ice crystallographic and strain rate changes with strain in compression and extension. Cold Regions Sci. Technol., 8(3), 269286 (doi: 10.1016/0165-232X(84)90058-2)
Jacka TH and Li J (1994) The steady-state crystal size of deforming ice. Ann. Glaciol., 20, 1328 (doi: 10.3189/172756494794587230)
Jacka TH and Li J (2000) Flow rates and crystal orientation fabrics in compression of polycrystalline ice at low temperature and stresses. In Hondoh T ed. Physics of Ice Core Records, Hokkaido University Press, Sapporo. 83113
Jessell MW, Bons PD, Evans L, Barr T and Stüwe K (2001a) Elle: the numerical simulation of metamorphic and deformation microstructures. Comput. Geosci., 27, 1730 (doi: 10.1016/S0098-3004(00)00061-3)
Jessell MW, Evans L, Barr T and Stüwe K (2001b) Modeling of anisotropic grain growth in minerals. Tectonic modeling: a volume in honor of Hans Ramberg, eds A Koyi and NS Mancktelow. 193, 39
Jessell MW, Kostenko O and Jamtveit B (2003) The preservation potential of microstructures during static grain growth. J. Metamorphic Geol., 21(5), 481491 (doi: 10.1046/j.1525-1314.2003.00455.x)
Jessell MW, Siebert E, Bons PD, Evans L and Piazolo S (2005) A new type of numerical experiment on the spatial and temporal patterns of localization of deformation in a material with a coupling of grain size and rheology. Earth Planet. Sci. Lett., 239(3), 309326 (doi: 10.1016/j.epsl.2005.03.030)
Jessell MW, Bons PD, Griera A, Evans LA and Wilson CJL (2009) A tale of two viscosities. J. Struct. Geol., 31, 719736 (doi: 10.1016/j.jsg.2009.04.010)
Karato SI (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, Cambridge (doi: 10.1017/CBO9780511804892)
Kennicutt II and 6 others (2014) Six priorities for Antarctic science. Nature, 512(7512), 2325 (doi: 10.1038/512023a)
Ketcham WM and Hobbs PV (1969) An experimental determination of the surface energies of ice. Philos. Mag., 19(162), 11611173 (doi: 10.1080/14786436908228641)
Kipfstuhl S and 6 others (2006) Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale. J. Glaciol., 52(178), 398406 (doi: 10.3189/172756506781828647)
Kipfstuhl S and 6 others (2009) Evidence of dynamic recrystallization in polar firn. J. Geophys. Res.: Solid Earth (1978–2012) , 114(B5) (doi: 10.1029/2008JB005583)
Kocks UF, Tomé CN and Wenk HR (2000) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge
Kröner E (1962) Dislocations and continuum mechanics. Appl. Mech. Rev., 15(8), 599606
Lebensohn RA (2001) N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater., 49(14), 27232737
Lebensohn RA and Tomé CN (1993) A self-consistent approach for the simulation of plastic deformation and texture development of polycrystals: application to Zirconium alloys. Acta Metall. Mater., 41(9), 26112624 (doi: 10.1016/0956-7151(93)90130-K)
Lebensohn RA, Liu Y and Castañeda PP (2004) Macroscopic properties and field fluctuations in model power-law polycrystals: full-field solutions versus self-consistent estimates. Proc. R. Soc. London. Ser. A: Math. Phys. Eng. Sci., 460(2045), 13811405 (doi: 10.1098/rspa.2003.1212)
Lebensohn RA, Castelnau O, Brenner R and Gilormini P (2005) Study of the antiplane deformation of linear 2-D polycrystals with different microstructures. Int. J. Solids Struct., 42(20), 54415459 (doi: 10.1016/j.ijsolstr.2005.02.051)
Lebensohn RA, Tomé CN and Ponte Castañeda P (2007) Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos. Mag., 87(28), 42874322 (doi: 10.1080/14786430701432619)
Lebensohn RA, Brenner R, Castelnau O, Rollett AD (2008) Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater., 56(15), 39143926 (doi: 10.1016/j.actamat.2008.04.016)
Li JCM (1962) Possibility of subgrain rotation during recrystallization. J. Appl. Phys., 33(10), 29582965 (doi: 10.1063/1.1728543)
Lipenkov VY, Barkov NI, Dural P and Pimenta P (1989) Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35, 392398
Llorens M-G, Bons PD, Griera A, Gomez-Rivas E and Evans LA (2013a) Single layer folding in simple shear. J. Struct. Geol., 50, 209220 (doi: 10.1016/j.jsg.2012.04.002)
Llorens M-G, Bons PD, Griera A and Gomez-Rivas E (2013b) When do folds unfold during progressive shear? Geology, 41, 563566 (doi: 10.1130/G33973.1)
Ma A, Roters F and Raabe D (2006) A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater., 54.8, 21692179 (doi: 10.1016/j.actamat.2006.01.005)
Mathiesen J and 6 others (2004) Dynamics of crystal formation in the Greenland NorthGRIP ice core. J. Glaciol., 50(170), 325328 (doi: 10.3189/172756504781829873)
McQueen HJ and Evangelista E (1988) Substructures in aluminium from dynamic and static recovery. Czech. J. Phys. B, 38(4), 359372 (doi: 10.1007/BF01605405)
Mainprice D, Hielscher R and Schaeben H (2011) Calculating anisotropic physical properties from texture data using the MTEX open source package. Geol. Soc. London Spec. Publ., 360(1), 175192 (doi: 10.1144/SP360.10)
Michel JC, Moulinec H and Suquet P (2000) A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Comput. Model. Eng. Sci., 1(2), 7988
Michel JC, Moulinec H and Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng., 52(1–2), 139160
Miyamoto A and 5 others (2005) Ice fabric evolution process understood from anisotropic distribution of a-axis orientation on the GRIP (Greenland) ice core. Ann. Glaciol., 42(1), 4752 (doi: 10.3189/172756405781812501)
Mika DP and Dawson PR (1998) Effects of grain interaction on deformation in polycrystals. Mater. Sci. Eng. A, 257(1), 6276 (doi: 10.1016/S0921-5093(98)00824-7)
Mohamed G and Bacroix B (2000) Role of stored energy in static recrystallization of cold rolled copper single and multicrystals. Acta Mater., 48(13), 32953302 (doi: 10.1016/S1359-6454(00)00155-5)
Moldovan D, Wolf D and Phillpot SR (2001) Theory of diffusion-accommodated grain rotation in columnar polycrystalline microstructures. Acta Mater., 49(17), 35213532 (doi: 10.1016/S1359-6454(01)00240-3)
Moldovan D, Wolf D, Phillpot SR and Haslam AJ (2002) Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation. Acta Mater., 50(13), 33973414 (doi: 10.1016/S1359-6454(02)00153-2)
Montagnat M and Duval P (2004) The viscoplastic behaviour of ice in polar ice sheets: experimental results and modelling. Comptes Rendus Physique, 5(7), 699708 (doi: 10.1016/j.crhy.2004.06.002)
Montagnat M, Weiss J, Chevy J, Duval P, Brunjail H, Bastie P and Gil Sevillano J (2006) The heterogeneous nature of slip in ice single crystals deformed under torsion. Philos. Mag., 86(27), 42594270
Montagnat M, Blackford JR, Piazolo S, Arnaud L and Lebensohn RA (2011) Measurements and full-field predictions of deformation heterogeneities in ice. Earth Planet. Sci. Lett., 305(1–2), 153160 (doi: 10.1016/j.epsl.2011.02.050)
Montagnat M and 11 others (2013) Multiscale modeling of ice deformation behavior. J. Struct. Geol., 61, 78108 (doi: 10.1016/j.jsg.2013.05.002)
Montagnat M and 9 others (2014) Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores. Cryosphere, 8(4), 11291138 (doi: 10.5194/tc-8-1129-2014)
Moulinec H and Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l'Académie des sciences. Série II, Mécanique, Physique, Chimie, Astronomie, 318(11), 14171423
Moulinec H and Suquet P (1998) Numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng., 157(1), 6994 (doi: 10.1016/S0045-7825(97)00218-1)
Nasello OB, Di Prinzio CL and Guzmán PG (2005) Temperature dependence of “pure” ice grain boundary mobility. Acta Mater., 53(18), 48634869 (doi: 10.1016/j.actamat.2005.06.022)
Nye J (1953) Some geometrical relations in dislocated crystals. Acta Mater., 1(2), 153162 (doi: 10.1016/0001-6160(53)90054-6)
Passchier CW and Trouw RAJ (2005) Deformation mechanisms. Microtectonics, Springer, Berlin. 2566 (doi: 10.1007/978-3-662-08734-3_3)
Piazolo S, Bons PD, Jessell MW, Evans L and Passchier CW (2002) Dominance of microstructural processes and their effect on microstructural development: insights from numerical modelling of dynamic recrystallization. Geol. Soc. London Spec. Public., 200(1), 149170 (doi: 10.1144/GSL.SP.2001.200.01.10)
Piazolo S, Jessell MW, Bons PD, Evans L and Becker JK (2010) Numerical simulations of microstructures using the Elle platform: a modern research and teaching tool. J. Geol. Soc. India, 75(1), 110127 (doi: 10.1007/s12594-010-0028-6)
Piazolo S and 6 others (2012) Substructure dynamics in crystalline materials: new insight from in situ experiments, detailed EBSD analysis of experimental and natural samples and numerical modelling. Mater. Sci. Forum, 715, 502507 (doi: 10.4028/www.scientific.net/MSF.715-716.502)
Piazolo S, Montagnat M, Grennerat F, Moulinec H and Wheeler J (2015) Effect of local stress heterogeneities on dislocation fields: examples from transient creep in polycrystalline ice. Acta Materialia, 90, 303309
Prakash A and Lebensohn RA (2009) Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms. Model. Simul. Mater. Sci. Eng., 17.6, 064010 (doi: 10.1088/0965-0393/17/6/064010)
Poirier JP (1985) Creep of crystals. Cambridge University Press, New York (doi: 10.1017/CBO9780511564451)
Raabe D, Sachtleber M, Zhao Z, Roters F and Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater., 49(17), 34333441 (doi: 10.1016/S1359-6454(01)00242-7)
Randle V (1993). Microtexture investigation of the relationship between strain and anomalous grain growth. Philos. Mag. A, 67.6, 13011313 (doi: 10.1080/01418619308225356)
Read WT and Shockley W (1950) Dislocation models of crystal grain boundaries. Phys. Rev., 78.3, 275 (doi: 10.1103/PhysRev.78.275)
Rigsby GP (1951) Crystal fabric studies on emmons glacier mount rainier, Washington. J. Geol., 59, 590598 (doi: 10.1086/625914)
Roessiger J, Bons PD and Faria SH (2012) Influence of bubbles on grain growth in ice. J. Struct. Geol., 61, 123132 (doi: 10.1016/j.jsg.2012.11.003)
Roessiger J and 8 others (2011) Competition between grain growth and grain size reduction in polar ice. J. Glaciol., 57(205), 942948 (doi: 10.3189/002214311798043690)
Roters F, Eisenlohr P, Bieler TR and Raabe D (2011) Crystal plasticity finite element methods: in materials science and engineering. John Wiley & Sons (doi: 10.1002/9783527631483)
Roters F and 5 others (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater., 58(4), 11521211 (doi: 10.1016/j.actamat.2009.10.058)
Sachs G (1928) On the derivation of a condition of flowing. Zeitschrift des Vereins Deutscher Ingenieure für Maschinenbau und Metallbearbeitung, 72, 734736
Schulson EM and Duval P (2009) Creep and fracture of ice. Cambridge University Press, Cambridge. (p. 432) (doi: 10.1017/CBO9780511581397)
Sellars CM (1978) Recrystallization of metals during hot deformation. Philos. Trans. R. Soc. London A, 288(1350), 147158 (doi: 10.1098/rsta.1978.0010)
Stipp M and Tullis J (2003) The recrystallized grain size piezometer for quartz. Geophys. Res. Lett., 30(21), 2088 (doi: 10.1029/2003GL018444)
Takeda YT, and Griera A (2006) Rheological and kinematical responses to flow of two-phase rocks. Tectonophysics, 427.1, 95113 (doi: 10.1016/j.tecto.2006.03.050)
Taylor GI (1938) Plastic strain in metals. J. Inst. Met., 62, 307324
Thorsteinsson T (2002) Fabric development with nearest-nieghbour interaction and dynamic recrystallization. J. Geophys. Res., 107(B1), 113 (doi: 10.1029/2001JB000244).
Thorsteinsson T, Kipfstuhl J, Eicken H, Johnsen SJ and Fuhrer K (1995) Crystal size variations in Eemian-age ice from the GRIP ice core, central Greenland. Earth Planet. Sci. Lett., 131(3), 381394 (doi: 10.1016/0012-821X(95)00031-7)
Treagus SH and Lan L (2004) Deformation of square objects and boudins. J. Struct. Geol., 26.8, 13611376 (doi: 10.1016/j.jsg.2003.12.002)
Treverrow A, Budd WF, Jacka TH and Warner RC (2012) The tertiary creep of polycrystalline ice: experimental evidence for stress-dependent levels of strain rate enhancement. J. Glaciol., 58(208), 301314 (doi: 10.3189/2012JoG11J149)
Tullis J, Dell'Angelo L and Yund RA (1990) Ductile shear zones from brittle precursors in feldspathic rocks: the role of dynamic recrystallization. In Ramberg H, Hemin AK and Mancktelow NS eds The brittle-ductile transition in rocks, 6781 (doi: 10.1029/GM056p0067)
Upmanyu M, Srolovitz DJ, Shvindlerman LS and Gottstein G (2002) Molecular dynamics simulation of triple junction migration. Acta Mater., 50(6), 14051420 (doi: 10.1016/S1359-6454(01)00446-3)
Urai JL, Means WD and Lister GS (1986) Dynamic recrystallization of minerals. In Hobbs BE ed. Mineral and rock deformation: laboratory studies: The Paterson volume, 161199 (doi: 10.1029/GM036p0161)
Van der Veen CJ and Whillans IM (1994). Development of fabric in ice. Cold Regions Sci. Technol., 22(2), 171195 (doi: 10.1016/0165-232X(94)90027-2)
Vollmer FW (1990) An application of eigenvalue methods to structural domain analysis. Geol. Soc. Am. Bull., 102(6), 786791 (doi: 10.1130/0016-7606(1990)102%3C0786:AAOEMT%3E2.3.CO;2)
Wang Y, Kipfstuhl S, Azuma N, Thorsteinsson T and Miller H (2003) Ice-fabrics study in the upper 1500 m of the Dome C (East Antarctica) deep ice core. Ann. Glaciol., 37(1), 97104 (doi: 10.3189/172756403781816031)
Weikusat I, Kipfstuhl S, Faria SH, Azuma N and Miyamoto A (2009) Subgrain boundaries and related microstructural features in EDML (Antarctica) deep ice core. J. Glaciol., 55(191), 461472 (doi: 10.3189/002214309788816614)
Weiss J and Marsan D (2003) Three-dimensional mapping of dislocation avalanches: clustering and space/time coupling (2003). Science, 299, 89 (doi: 10.1126/science.1079312)
Wen J, Huang Y, Hwang KC, Liu C and Li M (2005) The modified Gurson model accounting for the void size effect. Int. J. Plast., 21(2), 381395 (doi: 10.1016/j.ijplas.2004.01.004)
Wilson CJL (1986) Deformation induced recrystallization of ice; the application of in situ experiments. In Hobbs BE ed. Mineral and rock deformation: laboratory studies: The Paterson volume, 213232 (doi: 10.1029/GM036p0213)
Wilson CJL and Zhang Y (1996) Development of microstructure in the high-temperature deformation of ice. Ann. Glaciol., 23, 293302
Wilson CJL, Peternell M, Piazolo S and Luzin V (2013) Microstructure and fabric development in ice: lessons learned from in situ experiments and implications for understanding rock evolution. J. Struct. Geol., 61, 5077 (doi: 10.1016/j.jsg.2013.05.006)
Woodcock NH (1977) Specification of fabric shapes using an eigenvalues method. Geol. Soc. Am. Bull., 88(9), 12311236 (doi: 10.1130/0016–7606(1977)88%3C1231:SOFSUA%3E2.0.CO;2)
Zaffarana C, Tommasi A, Vauchez A and Grégoire M (2014) Microstructures and seismic properties of south Patagonian mantle xenoliths (Gobernador Gregores and Pali Aike). Tectonophysiscs, 621, 175197 (doi: 10.1016/j.tecto.2014.02.017)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 17
Total number of PDF views: 135 *
Loading metrics...

Abstract views

Total abstract views: 306 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.