Skip to main content
×
×
Home

Earthquake-induced snow avalanches: II. Experimental study

  • Evgeny A. Podolskiy (a1), Kouichi Nishimura (a1), Osamu Abe (a2) and Pavel A. Chernous (a3)
Abstract

We conducted experiments on the stability of snow, subjecting snow to vibrations, with the aim of improving our understanding of poorly studied mechanisms behind the triggering of avalanches during earthquakes. Most experiments were carried out on a specially constructed shaking table using artificial snowpacks containing a weak layer. Accelerations in the snow samples were measured using high-frequency sensors, enabling calculation of vibration-induced stresses within the snow at the moment of fracture. We used a high-speed camera to film different types of fracturing. In all cases, the vibrations caused failure of the snow by fracturing along the weak layer or at the base of the snow sample. An additional inertial stress induced by accelerations normal to the shear plane was quantified. We find that this stress can be related to smaller values of the shear strength in snow.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Earthquake-induced snow avalanches: II. Experimental study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Earthquake-induced snow avalanches: II. Experimental study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Earthquake-induced snow avalanches: II. Experimental study
      Available formats
      ×
Copyright
References
Hide All
Abe, O. and Nakamura, T.. 2005. Shear fracture strength of snow measured by the horizontal vibration method. J. Snow Eng., 21(4), 1112. [In Japanese.]
Anderson, J.G. 2003. Strong-motion seismology. In Lee, W.H.K., Kanamori, H., Jennings, P.C. and Kisslinger, C., eds. International handbook of earthquake and engineering seismology, part B. London, etc., Academic Press. (International Geophysics 81.)
Aoi, S., Kanugi, T. and Fujiwara, H.. 2008. Trampoline effect in extreme ground motion. Science, 322(5902), 727730.
Asano, S., Matsuura, S., Okamoto, T. and Matsuyama, K.. 2003. Shaking table tests to measure the underground displacement of the slope. J. Jpn Landslide Soc., 40(2), 134137.
Bartelt, P. and Lehning, M.. 2002. A physical SNOWPACK model for the Swiss avalanche warning. Part I: numerical model. Cold Reg. Sci. Technol., 35(3), 123145.
Chernous, P., Zuzin, Y., Mokrov, E., Kalabin, G., Fedorenko, Y. and Husebye, E.. 1999. Avalanche hazards in Khibiny Massif, Kola, and the new Nansen Seismograph Station. IRIS Newsl., 18(1), 1213.
Chernous, P., Mokrov, E., Fedorenko, Y., Husebye, E. and Beketova, E.. 2002. Russian–Norwegian project on seismicity-induced avalanches. In Stevens, J.R., ed. Proceedings of the International Snow Science Workshop, 29 September–4 October 2002, Penticton, British Columbia. Victoria, BC, British Columbia Ministry of Transportation Snow Avalanche Programs, 2530.
Chernous, P.A., Fedorenko, Yu.V., Mokrov, E.G., Barashev, N.V., Hewsby, E. and Beketova, E.B.. 2004. Issledovanie vliyaniya seismichnosti na obrazovanie lavin [Study of seismicity effect on avalanche origin]. Mater. Glyatsiol. Issled./Data Glaciol. Stud. 96, 167174. [In Russian with English summary.]
Chernous, P., Fedorenko, Yu., Mokrov, E. and Barashev, N.. 2006. Studies of seismic effects on snow stability on mountain slopes. Polar Meteorol. Glaciol., 20, 6273.
Fierz, C. and 8 others. 2009. The international classification for seasonal snow on the ground. Paris, UNESCO–International Hydrological Programme (IHP Technical Documents in Hydrology 83.)
Föhn, P. and Camponovo, C.. 1997. Improvements by measuring shear strength of weak layers. In Proceedings of the International Snow Science Workshop, 6– 11 October 1996, Banff, Alberta. Revelstoke, B.C., Canadian Avalanche Association, 158162.
Giardini, D., Gruenthal, G., Shedlock, K. and Zhang, P.. 2003. The GSHAP global seismic hazard map. In Lee, W.H.K., Kanamori, H., Jennings, P.C. and Kisslinger, C., eds. International handbook of earthquake and engineering seismology, Part B. London, etc., Academic Press, 12331239.
Higashiura, M., Nakamura, T., Nakamura, H. and Abe, O.. 1979. An avalanche caused by an earthquake. Rep. Nat. Res. Cent. Disaster Prev. 21, 103112. [In Japanese with English summary.]
Jamieson, J.B. and Johnston, C.D.. 1990. In-situ tensile strength of snowpack layers. J. Glaciol., 36(122), 102106.
Kinosita, S. and Wakahama, G.. 1960. Thin sections of deposited snow made by the use of aniline. Contrib. Inst. Low Temp. Sci., Ser. A 15, 3545.
Kramer, S.L. 1996. Geotechnical earthquake engineering. Englewood Cliffs, NJ, Prentice Hall.
Krauskopf, K.B. 1968. Preface. In The Great Alaska Earthquake of 1964. Vol. 3: Hydrology, Part A. Washington, DC, National Academy of Sciences. (NAS Publication 1603.)
LaChapelle, E.R. 1968. The character of snow avalanching induced by the Alaska earthquake. In The Great Alaska Earthquake of 1964. Vol. 3: Hydrology, Part A. Washington, DC, National Academy of Sciences, 355361. (NAS Publication 1603.)
Matsuzawa, M., Kajiya, Y. and Ito, Y.. 2007. Assessment of snow safety factor under earthquake. Snow Ice Hokkaido, 26, 9598. [In Japanese.]
Mellor, M. 1975. A review of basic snow mechanics. IAHS Publ. 114 (Symposium at Grindelwald 1974 – Snow Mechanics), 251291.
Mokrov, E.G. 2008. Seismicheskie faktory lavinoobrazovaniya [Seismic factors of avalanche release]. Moscow, Nauchniy Mir. [In Russian with English summary.]
Nakamura, T., Abe, O., Hashimoto, R. and Ohta, T.. 2010. A dynamic method to measure the shear strength of snow. J. Glaciol., 56(196), 333338.
Narita, H. 1980. Mechanical behaviour and structure of snow under uniaxial tensile stress. J. Glaciol., 26(94), 275282.
Newmark, N.M. and Rosenblueth, E.. 1971. Fundamentals of earthquake engineering. Englewood Cliffs, NJ, Prentice-Hall.
Ogura, Y., Izumi, K., Miyazaki, N. and Kobayashi, S.. 2001. An avalanche caused by an earthquake at Nakazato village, Niigata Prefecture, on January 4th 2001. Annu. Rep. Res. Inst. Hazards Snowy Areas, Niigata Univ., 23, 915. [In Japanese with English summary.]
Perla, R. 1977. Slab avalanche measurements. Can. Geotech. J., 14(2), 206213.
Podolskiy, E.A., Nishimura, K., Abe, O. and Chernous, P.A.. 2010. Earthquake-induced snow avalanches: I. Historical case studies. J. Glaciol., 56(197), 431446.
Reitherman, R. 1997. The 1998 CUREe Calendar: historic developments in the evolution of earthquake engineering. Richmond, CA, Consortium of Universities for Research in Earthquake Engineering.
Schweizer, J., Jamieson, J.B. and Schneebeli, M.. 2003. Snow avalanche formation. Rev. Geophys., 41(4), 1016. (10.1029/2002RG000123.)
Singh, A. and Ganju, A.. 2002. Earthquakes and avalanches in western Himalaya. In Paul, D.K., Kumar, A. and Sharma, M.L., eds. Proceedings of the 12th Symposium on Earthquake Engineering, 16–18 December, 2002, Roorkee, India. Roorkee, Indian Institute of Technology.
Tarr, R.S. and Martin, L.. 1914. Alaskan glacier studies of the National Geographic Society in the Yakutat Bay, Prince William Sound and Lower Copper River regions. Washington, DC, National Geographic Society.
Voitkovsky, K.F., Bozhinsky, A.N., Golubev, V.N., Laptev, M.N., Zhigulsky, A.A. and Slesarenko, Y.. 1975. Creep-induced changes in structure and density of snow. IAHS Publ. 114 (Symposium at Grindelwald 1974 – Snow Mechanics), 171179.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 65 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 27th May 2018. This data will be updated every 24 hours.