Skip to main content
×
×
Home

Effects of ice deformation on Röthlisberger channels and implications for transitions in subglacial hydrology

  • COLIN R. MEYER (a1), MATHEUS C. FERNANDES (a1), TIMOTHY T. CREYTS (a2) and JAMES R. RICE (a1) (a3)
Abstract

Along the base of glaciers and ice sheets, the sliding of ice over till depends critically on water drainage. In locations where drainage occurs through Röthlisberger channels, the effective pressure along the base of the ice increases and can lead to a strengthening of the bed, which reduces glacier sliding. The formation of Röthlisberger channels depends on two competing effects: (1) melting from turbulent dissipation opens the channel walls and (2) creep flow driven by the weight of the overlying ice closes the channels radially inward. Variation in downstream ice velocity along the channel axis, referred to as an antiplane shear strain rate, decreases the effective viscosity. The softening of the ice increases creep closure velocities. In this way, even a modest addition of antiplane shear can double the size of the Röthlisberger channels for a fixed water pressure or allow channels of a fixed radius to operate at lower effective pressure, potentially decreasing the strength of the surrounding bed. Furthermore, we show that Röthlisberger channels can be deformed away from a circular cross section under applied antiplane shear. These results can have broad impacts on sliding velocities and potentially affect the total ice flux out of glaciers and ice streams.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of ice deformation on Röthlisberger channels and implications for transitions in subglacial hydrology
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of ice deformation on Röthlisberger channels and implications for transitions in subglacial hydrology
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of ice deformation on Röthlisberger channels and implications for transitions in subglacial hydrology
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Colin R. Meyer <colinrmeyer@gmail.com>
References
Hide All
Alley, RB, Blankenship, DD, Bentley, CR and Rooney, ST (1986) Deformation of till beneath Ice Stream B, west Antarctica. Nature, 322(6074), 5759 (doi: 10.1038/322057a0)
Anderson, RS, Hallet, B, Walder, J and Aubry, BF (1982) Observations in a cavity beneath Grinnell Glacier. Earth Surf. Process. Landforms, 7(1), 6370 (doi: 10.1002/esp.3290070108)
Barcilon, V and Macayeal, DR (1993) Steady flow of a viscous ice stream across a no-slip/free-slip transition at the bed. J. Glaciol., 39(131), 167185
Bartholomaus, TC, Anderson, RS and Anderson, SP (2011) Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol., 57(206), 9851002 (doi: 10.3189/002214311798843269)
Bentley, CR, Lord, N and Liu, C (1998) Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica. J. Glaciol., 44(146), 149156
Björnsson, H (1998) Hydrological characteristics of the drainage system beneath a surging glacier. Nature, 395(6704), 771774
Blankenship, DD, Bentley, CR, Rooney, ST and Alley, RB (1986) Seismic measurements reveal a saturated porous layer beneath an active Antarctic Ice Stream. Nature, 322(6074), 5457 (doi: 10.1038/322054a0)
Blankenship, DD, Bentley, CR, Rooney, ST and Alley, RB (1987) Till beneath Ice Stream B: 1. Properties derived from seismic travel times. J. Geophys. Res., 92(B9), 89038911 (doi: 10.1029/jb092ib09p08903)
Boulton, GS, Dent, DL and Morris, EM (1974) Subglacial shearing and crushing, and the role of water pressures in tills from southeast iceland. Geogr. Ann., 56A, 135145
Brugman, MM (1986) Water flow at the base of a surging glacier. (PhD thesis, Calif. Inst. of Technol., Pasadena)
Budd, WF, Keage, PL and Blundy, NA (1979) Empirical studies of ice sliding. J. Glaciol., 23, 157170
Clarke, GKC (1987) Subglacial till: a physical framework for its properties and processes. J. Geophys. Res., 92(B9), 90239036 (doi: 10.1029/jb092ib09p09023)
Clarke, GKC (2003) Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J. Glaciol., 49(165), 299313 (doi: 10.3189/172756503781830728)
Clarke, GKC, Collins, SG and Thompson, DE (1984) Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci., 21(2), 232240 (doi: 10.1139/e84-024)
Creyts, TT and Schoof, C (2009) Drainage through subglacial water sheets. J. Geophys. Res., 114(F04008), 118 (doi: 10.1029/2008jf001215)
Creyts, TT, Clarke, GKC and Church, M (2013) Evolution of subglacial overdeepenings in response to sediment redistribution and glaciohydraulic supercooling. J. Geophys. Res., 118(2), 423446 (doi: 10.1002/jgrf.20033)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Elsevier, Oxford
Cutler, PM (1998) Modelling the evolution of subglacial tunnels due to varying water input. J. Glaciol., 44(148), 485497
Dallaston, MC and Hewitt, I (2014) Free-boundary models of a meltwater conduit. Phys. Fluids, 26(083101), 121 (doi: 10.1063/1.4892389)
Dassault Systémes (2012) ABAQUS 6.12-1. Dassault Systémes
Durham, WB, Kirby, SH and Stern, LA (1997) Creep of water ices at planetary conditions: a compilation. J. Geophys. Res., 102(E7), 1629316302 (doi: 10.1029/97je00916)
Echelmeyer, K and Harrison, W (1999) Ongoing margin migration of Ice Stream B, Antarctica. J. Glaciol., 45(150), 361369 (doi: 10.3189/002214399793377059)
Eisen, O and 5 others (2005) Variegated Glacier, Alaska, USA: a century of surges. J. Glaciol., 51(174), 399406 (doi: 10.3189/172756505781829250)
Engelhardt, H and Kamb, B (2013) Kamb Ice Stream flow history and surge potential. Ann. Glaciol., 54(63), 287298 (doi: 10.3189/2013aog63a535)
Engelhardt, H, Humphrey, N, Kamb, B and Fahnestock, M (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science, 248(4951), 5759 (doi: 10.1126/science.248.4951.57)
Engelhardt, HF and Kamb, B (1997) Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol., 43(144), 207230
Engelhardt, HF and Kamb, B (1998) Basal sliding of Ice Stream B, West Antarctica. J. Glaciol., 44(147), 223230
Eshelby, JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A, 241(1226), 376396 (doi: 10.1098/rspa.1957.0133)
Evatt, GW (2015) Röthlisberger channels with finite ice depth and open channel flow. Ann. Glaciol., 50(70), 4550 (doi: 10.3189/2015aog70a992)
Fischer, UH and Clarke, GKC (1997) Stick slip sliding behaviour at the base of a glacier. Ann. Glaciol., 24, 390396
Flowers, GE and Clarke, GKC (2002a) A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. J. Geophys. Res., 107(B11), ECV9, 117 (doi: 10.1029/2001jb001122)
Flowers, GE and Clarke, GKC (2002b) A multicomponent coupled model of glacier hydrology 2. Application to Trapridge Glacier, Yukon, Canada. J. Geophys. Res., 107(B11), ECV–10 (doi: 10.1029/2001jb001124)
Fountain, AG (1993) Geometry and flow conditions of subglacial water at South Cascade Glacier, Washington State, USA: an analysis of tracer injections. J. Glaciol., 39(131), 143156
Fountain, AG and Walder, JS (1998) Water flow through temperate glaciers. Rev. Geophys., 36, 299328 (doi: 10.1029/97rg03579)
Fowler, AC (1987) A theory of glacier surges. J. Geophys. Res., 92(B9), 91119120 (doi: 10.1029/jb092ib09p09111)
Fowler, AC (1989) A mathematical analysis of glacier surges. SIAM J. Appl. Math., 49(1), 246263 (doi: 10.1137/0149015)
Fowler, AC (2011) Mathematical geoscience, vol. 36. Springer Science & Business Media, Cambridge, UK
Fowler, AC and Ng, FSL (1996) The role of sediment transport in the mechanics of jökulhlaups. Ann. Glaciol., 22, 255259
Fricker, HA and Scambos, T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303315 (doi: 10.3189/002214309788608813)
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/science.1136897)
Glen, JW (1955) The creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A, 228(1175), 519538
Glen, JW (1956) Measurement of the deformation of ice in a tunnel at the foot of an ice fall. J. Glaciol., 2(20), 735745
Goldsby, D and Kohlstedt, D (2001) Superplastic deformation of ice: experimental observations. J. Geophys. Res., 106, 1101711030 (doi: 10.1029/2000jb900336)
Gray, L and 5 others (2005) Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(L03501) (doi: 10.1029/2004gl021387)
Haefeli, R (1951) Some observations on glacier flow. J. Glaciol., 1(9), 496500
Harper, JT and 5 others (2001) Spatial variability in the flow of a valley glacier: deformation of a large array of boreholes. J. Geophys. Res., 106(B5), 85478562 (doi: 10.1029/2000jb900440)
Haseloff, M, Schoof, C and Gagliardini, O (2015) A boundary layer model for ice stream margins. J. Fluid Mech., 781, 353387 (doi: 10.1017/jfm.2015.503)
Henderson, FM (1966) Open channel flow. MacMillan, New York
Hewitt, IJ (2011) Modelling distributed and channelized subglacial drainage: the spacing of channels. J. Glaciol., 57(202), 302314 (doi: 10.3189/002214311796405951)
Hewitt, IJ (2013) Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett., 371, 1625 (doi: 10.1016/j.epsl.2013.04.022)
Hindmarsh, RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J. Geophys. Res., 109(F1) (doi: 10.1029/2003jf000065)
Hock, R and Hooke, RL (1993) Evolution of the internal drainage system in the lower part of the ablation area of storglaciaren, sweden. Geol. Soc. Am. Bull., 105(4), 537546
Hooke, RL, Laumann, T and Kohler, J (1990) Subglacial water pressures and the shape of subglacial conduits. J. Glaciol., 36(122), 6771
Hutter, K and Olunloyo, VOS (1980) On the distribution of stress and velocity in an ice strip, which is partly sliding over and partly adhering to its bed, by using a Newtonian viscous approximation. Proc. R. Soc. Lond. Ser. A, 373(1754), 385403 (doi: 10.1098/rspa.1980.0155)
Iken, A and Bindschadler, RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119
Joughin, I and Tulaczyk, S (2002) Positive mass balance of the Ross Ice Streams, West Antarctica. Science, 295(5554), 476480 (doi: 10.1126/science.1066875)
Joughin, I, Tulaczyk, S, Bindschadler, R and Price, SF (2002) Changes in West Antarctic Ice Stream velocities: observation and analysis. J. Geophys. Res., 107(B11) (doi: 10.1029/2001jb001029)
Kamb, B (1987) Glacier surge mechanism based on linked cavity configuration of the base water conduit system. J. Geophys. Res., 92(B9), 90839099 (doi: 10.1029/jb092ib09p09083)
Kamb, B (1991) Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res., 96(B10), 1658516595 (doi: 10.1029/91jb00946)
Kamb, B (2001) Basal zone of the West Antarctic Ice Streams and its role in lubrication of their rapid motion. In Alley, RB and Bindschadler, RA eds. The West Antarctic ice sheet: behavior and environment, vol. 77. AGU, Washington, DC, 157199 (doi: 10.1029/ar077p0157)
Kamb, B and 7 others (1985) Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469479 (doi: 10.1126/science.227.4686.469)
Kavanaugh, JL and Clarke, GKC (2000) Evidence for extreme pressure pulses in the subglacial water system. J. Glaciol., 46(153), 206212 (doi: 10.3189/172756500781832963)
Lliboutry, L (1968) General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol., 7, 2158
Lliboutry, L (1979) Local friction laws for glaciers: a critical review and new openings. J. Glaciol., 23, 6795
Ng, FSL (1998) Mathematical modeling of subglacial drainage and erosion. (PhD thesis, St. Catherine's College, Oxford University)
Ng, FSL (2000) Canals under sediment-based ice sheets. Ann. Glaciol., 30(1), 146152 (doi: 10.3189/172756400781820633)
Nye, JF (1952) The mechanics of glacier flow. J. Glaciol., 2(12), 8293
Nye, JF (1953) The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proc. R. Soc. Lond. Ser. A, 219, 477489
Nye, JF (1973) Water at the bed of a glacier. In Symposium on the Hydrology of Glaciers, IAHS Publ., vol. 95, 189–194
Oerlemans, J (2013) A note on the water budget of temperate glaciers. Cryosphere, 7, 15571564 (doi: 10.5194/tc-7-1557-2013)
Perol, T and Rice, JR (2011) Control of the width of West Antarctic ice streams by internal melting in the ice sheet near the margins. In Abstract C11B-0677 presented at 2011 Fall Meeting, AGU, San Francisco, CA, 5–9 December
Perol, T and Rice, JR (2015) Shear heating and weakening of the margins of West Antarctic ice streams. Geophys. Res. Lett., 42(9), 34063413 (doi: 10.1002/2015gl063638)
Perol, T, Rice, JR, Platt, JD and Suckale, J (2015) Subglacial hydrology and ice stream margin locations. J. Geophys. Res., 120(F003542), 117 (doi: 10.1002/2015jf003542)
Raymond, CF (1987) How do glaciers surge? A review. J. Geophys. Res., 92(B9), 91219134 (doi: 10.1029/jb092ib09p09121)
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic ice sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Röthlisberger, H (1972) Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177203
Sayag, R and Tziperman, E (2009) Spatiotemporal dynamics of ice streams due to a triple-valued sliding law. J. Fluid Mech., 640, 483505 (doi: 10.1017/s0022112009991406)
Schoof, C (2004) On the mechanics of ice-stream shear margins. J. Glaciol., 50(169), 208218 (doi: 10.3189/172756504781830024)
Schoof, C (2005) The effect of cavitation on glacier sliding. Proc. R. Soc. Lond. Ser. A, 461(2055), 609627 (doi: 10.1098/rspa.2004.1350)
Schoof, C (2010a) Coulomb friction and other sliding laws in a higher-order glacier flow model. Math. Models Methods Appl. Sci., 20(01), 157189 (doi: 10.1142/s0218202510004180)
Schoof, C (2010b) Ice sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/nature09618)
Schoof, C (2012) Thermally driven migration of ice-stream shear margins. J. Fluid Mech., 712, 552578 (doi: 10.1017/jfm.2012.438)
Schoof, C, Rada, CA, Wilson, NJ, Flowers, GE and Haseloff, M (2014) Oscillatory subglacial drainage in the absence of surface melt. Cryosphere, 8(3), 959976 (doi: 10.5194/tc-8-959-2014)
Shreve, RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214
Spring, U and Hutter, K (1981) Numerical studies of jökulhlaups. Cold Reg. Sci. Technol., 4(3), 227244
Steinemann, S (1954) Results of preliminary experiments on the plasticity of ice crystals. J. Glaciol., 2(16), 404412
Suckale, J, Platt, JD, Perol, T and Rice, JR (2014) Deformation-induced melting in the margins of the West Antarctic ice streams. J. Geophys. Res., 119(5), 10041025 (doi: 10.1002/2013jf003008)
Truffer, M and Echelmeyer, KA (2003) Of isbrae and ice streams. Ann. Glaciol., 36(1), 6672 (doi: 10.3189/172756403781816347)
Truffer, M and Echelmeyer, KA (2005) Margin migration rates and margin dynamics of the Siple Coast ice streams. National Snow and Ice Data Center, Boulder, CO (doi: http://dx.doi.org/10.7265/N50K26HH)
Tulaczyk, S, Kamb, B and Engelhardt, HF (2000) Basal mechanics of Ice Stream B, West Antarctica: 2. Undrained plastic bed model. J. Geophys. Res., 105(B1), 483494 (doi: 10.1029/1999jb900328)
Tulaczyk, S, Kamb, B and Engelhardt, HF (2001) Estimates of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio. Boreas, 30(2), 101114 (doi: 10.1080/03009480120262)
Vogel, SW and 7 others (2005) Subglacial conditions during and after stoppage of an Antarctic Ice Stream: is reactivation imminent? Geophys. Res. Lett., 32 (doi: 10.1029/2005gl022563)
Walder, J and Hallet, B (1979) Geometry of former subglacial water channels and cavities. J. Glaciol., 23, 335346
Walder, JS (1986) Hydraulics of subglacial cavities. J. Glaciol., 32(112), 439445
Walder, JS and Fowler, AC (1994) Channelized subglacial drainage over a deformable bed. J. Glaciol., 40(134), 315
Weertman, J (1972) General theory of water flow at base of a glacier or ice sheet. Rev. Geophys. Space Phys., 10, 287333 (doi: 10.1029/rg010i001p00287)
Werder, MA, Hewitt, IJ, Schoof, C and Flowers, GE (2013) Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res., 118(F20146), 119 (doi: 10.1002/jgrf.20146)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed