Skip to main content
×
×
Home

Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008

  • Takayuki Nuimura (a1), Koji Fujita (a1), Satoru Yamaguchi (a2) and Rishi R. Sharma (a3)
Abstract

Due to remoteness and high altitude, only a few ground-based glacier change studies are available in high-mountain areas in the Himalaya. However, digital elevation models based on remotely sensed data (RS-DEMs) provide feasible opportunities to evaluate how fast Himalayan glaciers are changing. Here we compute elevation changes in glacier surface (total area 183.3 km2) in the Khumbu region, Nepal Himalaya, for the period 1992-2008 using multitemporal RS-DEMs and a map-derived DEM calibrated with differential GPS survey data in 2007. Elevation change is calculated by generating a weighted least-squares linear regression model. Our method enables us to provide the distribution of uncertainty of the elevation change. Debris-covered areas show large lowering rates. The spatial distribution of elevation change shows that the different wastage features of the debris-covered glaciers depend on their scale, slope and the existence of glacial lakes. The elevation changes of glaciers in the eastern Khumbu region are in line with previous studies. The regional average mass balance of -0.40 ± 0.25 m w.e.a-1 for the period 1992-2008 is consistent with a global value of about -0.55 m w.e. a-1 for the period 1996-2005.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008
      Available formats
      ×
Copyright
References
Hide All
Berthier, E, Arnaud, Y, Kumar, R, Ahmad, S, Wagnon, P and Chevallier, P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3), 327-338 (doi: 10.1016/j.rse.2006.11.017)
Berthier, E, Schiefer, E, Clarke, GKC, Menounos, B and Rémy, F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci., 3(2), 92-95 (doi: 10.1038/ngeo737)
Bolch, T, Buchroithner, M, Pieczonka, T and Kunert, A (2008a) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol., 54(187), 592-600 (doi: 10.3189/002214308786570782)
Bolch, T, Buchroithner, MF, Peters, J, Baessler, M and Bajracharya, S (2008b) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natur. Hazards Earth Syst. Sci. (NHESS), 8(6), 1329-1340 (doi: 10.5194/nhess-8-1329-2008)
Bolch, T, Pieczonka, T and Benn, DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5(2), 349-358 (doi: 10.5194/tc-5-349-2011)
Bollasina, M, Bertolani, L and Tartari, G (2002) Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994-1999. Bull. Glaciol. Res., 19, 1-11
Cogley, JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50(50), 96-100 (doi: 10.3189/172756409787769744)
Cogley, JG, Kargel, JS, Kaser, G and Van der Veen, CJ (2010) Tracking the source of glacier misinformation. Science, 327(5965), 522 (doi: 10.1126/science.327.5965.522-a)
Cruz, RV and 9 others (2007) Asia. In Parry, ML, Canziani, OF, Palutikof, JP, Van der Linden, PJ and Hanson, CE eds. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 469-506
Dobhal, DP, Gergan, JT and Thayyen, RJ (2008) Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya, India. Bull. Glacier Res., 25, 9-17
Fujii, Y and Higuchi, K (1977) Statistical analyses of the forms of the glaciers in Khumbu region. Seppyo, J. Jpn. Soc. Snow Ice, 39, 7-14
Fujisada, H, Bailey, GB, Kelly, GG, Hara, S and Abrams, MJ (2005) ASTER DEM performance. IEEE Trans. Geosci. Remote Sens., 43(12), 2707-2714 (doi: 10.1109/TGRS.2005.847924)
Fujita, K (2008) Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276(1-2), 14-19 (doi: 10.1016/j.epsl.2008.08.028)
Fujita, K and Ageta, Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol., 46(153), 244-252 (doi: 10.3189/ 172756500781832945)
Fujita, K and Nuimura, T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc. Natl Acad. Sci. USA (PNAS), 108(34), 14011-14014 (doi: 10.1073/pnas.1106242108)
Fujita, K, Nakawo, M, Fujii, Y and Paudyal, P (1997) Changes in glaciers in Hidden Valley, Mukut Himal, Nepal Himalayas, from 1974 to 1994. J. Glaciol., 43(145), 583-588
Fujita, K, Suzuki, R, Nuimura, T and Sakai, A (2008) Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J. Glaciol., 54(185), 220-228 (doi: 10.3189/002214308784886162)
Hahn, M, Baral, TN and Sharma, RK (2003) A study on digital orthophoto generation of Mount Everest region. Nepal. J. Geo-inf. 2, 35-43
Iwata, S, Aoki, T, Kadota, T, Seko, K and Yamaguchi, S (2000) Morphological evolution of the debris cover on Khumbu Glacier, Nepal, between 1978 and 1995. IAHS Publ. 264 (Symposium at Seattle, 2000 - Debris-Covered Glaciers), 3-11
Jarvis, A, Reuter, HI, Nelson, A and Guevara, E (2008) Hole-filled seamless SRTM data, V4. International Centre for Tropical Agriculture (CIAT), Bogotá. http://srtm.csi.cgiar.org [accessed 20 August 2011]
Kääb, A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens., 57(1-2), 39-52
Kadota, T, Seko, K, Aoki, T, Iwata, S and Yamaguchi, S (2000) Shrinkage of the Khumbu Glacier, east Nepal from 1978 to 1995. IAHS Publ. 264 (Symposium at Seattle 2000 - Debris- Covered Glaciers), 235-243
Kulkarni, AV (1992) Mass balance of Himalayan glaciers using AAR and ELA methods. J. Glaciol., 38(128), 101-104
Lamsal, D, Sawagaki, T and Watanabe, T (2011) Digital terrain modelling using Corona and ALOS PRISM data to investigate the distal part of Imja Glacier, Khumbu Himal, Nepal. J. Mt Sci. [China], 8(3), 390-402 (doi: 10.1007/s11629-011-2064-0)
Mattson, LE, Gardner, JS and Young, GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publ. 218 (Symposium at Kathmandu 1992 - Snow and Glacier Hydrology), 289-296
Meier, MF (1984) Contribution of small glaciers to global sea level. Science, 226(4681), 1418-1421
Mihalcea, C, Mayer, C, Diolaiuti, G, Lambrecht, A, Smiraglia, C and Tartari, G (2006) Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol., 43, 292-300 (doi: 10.3189/ 172756406781812104)
Nuimura, T, Fujita, K, Fukui, K, Asahi, K, Aryal, R and Ageta, Y (2011) Temporal changes in elevation of the debris-covered ablation area of Khumbu glacier in the Nepal Himalaya since 1978. Arct. Antarct. Alp. Res., 43(2), 246-255 (doi: 10.1657/1938-424643.2.246)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271-290 (doi: 10.5194/tc-5-271- 2011)
Quincey, DJ and 6 others (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet. Change, 56(1-2), 137-152 (doi: 10.1016/j.gloplacha. 2006.07.013)
Quincey, DJ, Luckman, A and Benn, D (2009) Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol., 55(192), 596-606 (doi: 10.3189/002214309789470987)
Sakai, A and Fujita, K (2010) Correspondence. Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalaya. J. Glaciol., 56(195), 177-181 (doi: 10.3189/ 002214310791190785)
Sakai, A, Takeuchi, N, Fujita, K and Nakawo, M (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. IAHS Publ. 264 (Symposium at Seattle 2000 - Debris-Covered Glaciers), 119–13
Sakai, A, Nakawo, M and Fujita, K (2002) Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arct. Antarct. Alp. Res., 34(1), 12-19
Salerno, F, Buraschi, E, Bruccoleri, G, Tartari, G and Smiraglia, C (2008) Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. J. Glaciol., 54(187), 738-752 (doi: 10.3189/002214308786570926)
Toutin, T (2002) Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Trans. Geosci. Remote Sens., 40(10), 2241-2247 (doi: 10.1109/TGRS.2002.802878)
Toutin, T (2008) ASTER DEMs for geomatic and geoscientific applications: a review. Int. J. Remote Sens., 29(7), 1855-1875 (doi: 10.1080/01431160701408477)
Ueno, K and 11 others (2001) Meteorological observations during 1994-2000 at the automatic weather station (GEN AWS) in Khumbu region, Nepal Himalayas. Bull. Glaciol. Res., 18, 23-30
Wagnon, P and 10 others (2007) Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. J. Glaciol., 53(183), 603-611 (doi: 10.3189/002214307784409306)
Zemp, M and 6 others (2010) Reanalysis of multi-temporal aerial images of Storglaciaren, Sweden (1959-99). Part 2: Comparison of glaciological and volumetric mass balances. Cryosphere, 4(3), 345-357 (doi: 10.5194/tc-4-345-2010)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 152 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 27th May 2018. This data will be updated every 24 hours.