Skip to main content
×
×
Home

Estimates of the refreezing rate in an ice-shelf borehole

  • Kenneth G. Hughes (a1), Pat J. Langhorne (a1) and Michael J.M. Williams (a2)
Abstract

The refreezing rate of a borehole drilled through a 252 m thick region of the Ross Ice Shelf, Antarctica, is determined using oceanographic measurements over two periods of a day. We first use a method based on the conservation of salt in the supercooled salt water of the borehole. This is compared to a model using a numerical solution of the heat equation to find the temperature distribution in the host ice, allowing ice growth to be calculated from the balance of heat fluxes at the ice/water interface. This second method broadly confirms the refreezing rates deduced from salinity measurements, giving confidence in the generalization of this simple heat-flux model to predict refreezing rates of other boreholes. Predictions from both are subject to uncertainty due to the poorly defined value of the solid fraction of ice that freezes in a supercooled volume of sea water. This is taken to be 0.5 ± 0.1 throughout this study. The predicted rates are also strongly dependent on the initial and boundary conditions chosen, but results show the initial diameter of 600 mm decreases at a rate of ∼3–5 mm h−1 in an ice shelf with a minimum temperature of −22°C.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimates of the refreezing rate in an ice-shelf borehole
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimates of the refreezing rate in an ice-shelf borehole
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimates of the refreezing rate in an ice-shelf borehole
      Available formats
      ×
Copyright
References
Hide All
Arakeri, JH, Avila, FE, Dada, JM and Tovar, RO (2000) Convection in a long vertical tube due to unstable stratification – a new type of turbulent flow? Current Sci., 79(6), 859866
Bender, JA and Gow, AJ (1961) Deep drilling in Antarctica. IASH Publ. 55 (General Assembly of Helsinki 1960 – Antarctic Glaciology), 132141
Carslaw, HS and Jaeger, JC (1986) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford
Cholemari, MR and Arakeri, JH (2009) Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe. J. Fluid Mech., 621, 69102 (doi: 10.1017/S0022112008004254)
Clough, JW and Hansen, BL (1979) The Ross Ice Shelf project. Science, 203(4379), 433434 (doi: 10.1126/science.203.4379.433)
Fofonoff, NP and Millard, RC Jr (1983) Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44
Foster, TD (1983) The temperature and salinity fine structure of the ocean under the Ross Ice Shelf. J. Geophys. Res., 88(C4), 25562564 (doi: 10.1029/JC088iC04p02556)
Gough, AJ, Mahoney, AR, Langhorne, PJ, Williams, MJM, Robinson, NJ and Haskell, TG (2012) Signatures of supercooling: McMurdo Sound platelet ice. J. Glaciol., 58(207), 3850 (doi: 10.3189/2012JoG10J218)
Harrison, WD (1972) Temperature of a temperate glacier. J. Glaciol., 11(61), 1529
Haynes, WM ed. (2010) CRC handbook of chemistry and physics, 91st edn. CRC Press, Boca Raton, FL
Huang, JS and Barduhn, AJ (1985) The effect of natural convection on ice crystal growth rates in salt solutions. AIChE J., 31(5), 747752 (doi: 10.1002/aic.690310507)
Humbert, A, Greve, R and Hutter, K (2005) Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica. J. Geophys. Res., 110(F4), F04022 (doi: 10.1029/2004JF000170)
Humphrey, N and Echelmeyer, K (1990) Hot-water drilling and borehole closure in cold ice. J. Glaciol., 36(124), 287298
Jacobs, SS, Gordon, AL and Ardai, JL Jr (1979) Circulation and melting beneath the Ross Ice Shelf. Science, 203(4379), 439443 (doi: 10.1126/science.203.4379.439)
Kreith, F and Romie, FE (1955) A study of the thermal diffusion equation with boundary conditions corresponding to solidification or melting of materials initially at the fusion temperature. Proc. Phys. Soc. B, 68(5), 277291 (doi: 10.1088/0370-1301/68/5/302)
Leonard, GH, Purdie, CR, Langhorne, PJ, Haskell, TG, Williams, MJM and Frew, RD (2006) Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. J. Geophys. Res., 111(C4), C04012 (doi: 10.1029/2005JC002952)
MacAyeal, D, Sergienko, O and Muto, A (2008) Ross Ice Shelf firn temperature, Antarctica, National Snow and Ice Data Center, Digital media: http://nsidc.org/data/nsidc-0345.html
Mahoney, AR and 6 others (2011) The seasonal appearance of ice shelf water in coastal Antarctica and its effect on sea ice growth. J. Geophys. Res., 116(C11), C11032 (doi: 10.1029/2011JC007060)
Makinson, K (1993) The BAS hot water drill: development and current design. Cold Reg. Sci. Technol., 22(1), 121132 (doi: 10.1016/0165-232X(93)90051-9)
Napoléoni, JGP and Clarke, GKC (1978) Hot water drilling in a cold glacier. Can. J. Earth Sci., 15(2), 316321
Petrich, C, Langhorne, PJ and Haskell, TG (2007) Formation and structure of refrozen cracks in land-fast first-year sea ice. J. Geophys. Res., 112(C4), C04006 (doi: 10.1029/2006JC003466)
Poots, G (1962) On the application of integral-methods to the solution of problems involving the solidification of liquids initially at fusion temperature. Int. J. Heat Mass Transfer, 5(6), 525531 (doi: 10.1016/0017-9310(62)90163-1)
Rack, FR and 30 others (2012) What lies beneath? Interdisciplinary outcomes of the ANDRILL Coulman High Project site surveys on the Ross Ice Shelf. Oceanography, 25(3), 8489 (doi: 10.5670/oceanog.2012.79)
Rist, MA, Sammonds, PR, Oerter, H and Doake, CSM (2002) Fracture of Antarctic shelf ice. J. Geophys. Res., 107(B1) (doi: 10.1029/2000JB000058)
Schwerdtfeger, P (1963) The thermal properties of sea ice. J. Glaciol., 4(36), 789807
Weeks, WF (2010) On sea ice. University of Alaska Press, Fairbanks, AK
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 10
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 70 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 20th September 2018. This data will be updated every 24 hours.