Skip to main content
×
×
Home

Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments

  • ALEC VAN HERWIJNEN (a1), JOHAN GAUME (a1), EDWARD H. BAIR (a2), BENJAMIN REUTER (a1), KARL W. BIRKELAND (a3) and JÜRG SCHWEIZER (a1)...
Abstract
ABSTRACT

Measurements of the mechanical properties of snow are essential for improving our understanding and the prediction of snow failure and hence avalanche release. We performed fracture mechanical experiments in which a crack was initiated by a saw in a weak snow layer underlying cohesive snow slab layers. Using particle tracking velocimetry (PTV), the displacement field of the slab was determined and used to derive the mechanical energy of the system as a function of crack length. By fitting the estimates of mechanical energy to an analytical expression, we determined the slab effective elastic modulus and weak layer specific fracture energy for 80 different snowpack combinations, including persistent and nonpersistent weak snow layers. The effective elastic modulus of the slab ranged from 0.08 to 34 MPa and increased with mean slab density following a power-law relationship. The weak layer specific fracture energy ranged from 0.08 to 2.7 J m−2 and increased with overburden. While the values obtained for the effective elastic modulus of the slab agree with previously published low-frequency laboratory measurements over the entire density range, the values of the weak layer specific fracture energy are in some cases unrealistically high as they exceeded those of ice. We attribute this discrepancy to the fact that our linear elastic approach does not account for energy dissipation due to non-linear parts of the deformation in the slab and/or weak layer, which would undoubtedly decrease the amount of strain energy available for crack propagation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Corresponding author
Correspondence: Alec van Herwijnen <vanherwijnen@slf.ch>
References
Hide All
Anderson T (1995) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton, USA
Bair E, Simenhois R, Birkeland K and Dozier J (2012) A field study on failure of storm snow slab avalanches. Cold Reg. Sci. Technol., 79–80, 2028 (doi: 10.1016/j.coldregions.2012.02.007)
Bair E, Simenhois R, van Herwijnen A and Birkeland K (2014) The influence of edge effects on crack propagation in snow stability tests. Cryosphere, 8, 14071418 (doi: 10.5194/tcd-8-229-2014)
Bažant ZP and Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton, USA
Bažant ZP, Zi G and McClung D (2003) Size effect law and fracture mechanics of the triggering of dry snow slab avalanches. J. Geophys. Res. Solid Earth, 108, 2119 (doi: 10.1029/2002JB001884)
Birkeland K and van Herwijnen A (2014) The role of slabs and weak layers in fracture arrest. Proceedings of the 2014 International Snow Science Workshop, Banff, AB, Canada, 156168
Brown R, Satyawali P, Lehning M and Bartelt P (2001) Modeling the changes in microstructure of snow during metamorphism. Cold Reg. Sci. Technol., 33(2–3), 91101 (doi: 10.1016/S0165-232X(01)00032-5)
Camponovo C and Schweizer J (2001) Rheological measurements of the viscoelastic properties of snow. Ann. Glaciol., 32, 4450 (doi: 10.3189/172756401781819148)
Capelli A, Kapil JC, Reiweger I, Or D and Schweizer J (2016) Speed and attenuation of acoustic waves in snow: laboratory experiments and modeling with biot's theory. Cold Reg. Sci. Technol., 125, 111 (doi: 10.1016/j.coldregions.2016.01.004)
Chiaia B, Cornetti P and Frigo B (2008) Triggering of dry snow slab avalanches: stress versus fracture mechanical approach. Cold Reg. Sci. Technol., 53(2), 170178 (doi: 10.1016/j.coldregions.2007.08.003)
Crocker J and Grier D (1996) Methods of digital video microscopy for colloidal studies. J. Colloid Interf. Sci., 179(1), 298310 (doi: 10.1006/jcis.1996.0217)
Fierz C and 8 others (2009) The international classification for seasonal snow on the ground. HP-VII Technical Document in Hydrology, 83. UNESCO-IHP, Paris, France, 90
Föhn P, Camponovo C and Krüsi G (1998) Mechanical and structural properties of weak snow layers measured in situ. Ann. Glaciol., 26, 16
Gaume J, Chambon G, Eckert N and Naaim M (2013) Influence of weak-layer heterogeneity on snow slab avalanche release: application to the evaluation of avalanche release depths. J. Glaciol., 59(215), 423437 (doi: 10.3189/2013JoG12J161)
Gaume J and 6 others (2014) Evaluation of slope stability with respect to snowpack spatial variability. J. Geophys. Res., 119(9), 17831789 (doi: 10.1002/2014JF003193)
Gaume J, van Herwijnen A, Schweizer J, Chambon G and Birkeland K (2015) Modeling of crack propagation in weak snowpack layers using the discrete element method. Cryosphere, 9, 19151932 (doi: 10.5194/tc-9-1915-2015)
Gauthier D and Jamieson B (2008) Evaluation of a prototype field test for fracture and failure propagation propensity in weak snowpack layers. Cold Reg. Sci. Technol., 51(2–3), 8797 (doi: 10.1016/j.coldregions.2007.04.005)
Heierli J, Gumbsch P and Zaiser M (2008) Anticrack nucleation as triggering mechanism for slab avalanches. Science, 321(5886), 240243 (doi: 10.1126/science.1153948)
Hutchinson JW and Suo Z (1992) Mixed-mode cracking in layered materials. Adv. Appl. Mech., 29, 63191 (doi: 10.1016/S0065-2156(08)70164-9)
Jamieson J and Johnston C (2001) Evaluation of the shear frame test for weak snowpack layers. Ann. Glaciol., 32, 5969 (doi: 10.3189/172756401781819472)
LeBaron A and Miller D (2014) An energy-based microstructural constitutive model for fracture in snow. Proceedings of the International Snow Science Workshop, Banff, AB, Canada, 134138
Löwe H and van Herwijnen A (2012) A poisson shot noise model for micro-penetration of snow. Cold Reg. Sci. Technol., 70, 6270, ISSN 0165-232X (doi: 10.1016/j.coldregions.2011.09.001)
Marshall H and Johnson J (2009) Accurate inversion of high-resolution snow penetrometer signals for microstructural and micromechanical properties. J. Geophys. Res. Solid Earth, 114, F04016 (doi: 10.1029/2009JF001269)
McClung DM (1979) Shear fracture precipitated by strain softening as a mechanism of dry avalanche release. J. Geophys. Res., 84(B7), 35193526 (doi: 10.1029/JB084iB07p03519)
McClung DM (1981) Fracture mechanical models of dry slab avalanche release. J. Geophys. Res., 86(B11), 1078310790 (doi: 10.1029/JB086iB11p10783)
McClung DM (2007) Fracture energy applicable to dry snow slab avalanche release. Geophys. Res. Lett., 34(2), ISSN 0094-8276 (doi: 10.1029/2006GL028238)
McClung DM (2009) Dry snow slab quasi-brittle fracture initiation and verification from field tests. J. Geophys. Res. Earth, 114, ISSN 0148-0227 (doi: 10.1029/2007JF000913)
McClung DM (2015) Mode ii fracture parameters of dry snow slab avalanche weak layers calculated from the cohesive crack model. Int. J. Fracture, 193(2), 153169 (doi: 10.1007/s10704-015-0026-1)
Mellor M (1975) A review of basic snow mechanics. IAHS-AISH Pub., 114, 251291
Narita H (1980) Mechanical behavior and structure of snow under uniaxial tensile stress. J. Glaciol., 26(94), 275282
Podolskiy E and 8 others (2014) Healing of snow surface-to-surface contacts by isothermal sintering. Cryosphere, 8(5), 16511659 (doi: 110.5194/tc-8-1651-2014, 2014)
Reiweger I and Schweizer J (2010) Failure of a layer of buried surface hoar. Geophys. Res. Lett., 37(24), L24501, ISSN 0094-8276 (doi: 10.1029/2010GL045433)
Reiweger I and Schweizer J (2013) Weak layer fracture: facets and depth hoar. Cryosphere, 7(5), 14471453, ISSN 1994-0416 (doi: 10.5194/tc-7-1447-2013)
Reiweger I, Gaume J and Schweizer J (2015) A new mixed-mode failure criterion for weak snowpack layers. Geophys. Res. Lett., 42(5), 14271432 (doi: 10.1002/2014GL062780.)
Reuter B, Proksch M, Löwe H, van Herwijnen A and Schweizer J (2013) On how to measure snow mechanical properties relevant to slab avalanche release. Proceedings of the International Snow Science Workshop, Grenoble, France, 7-11 October 2013, 711
Reuter B, Schweizer J and van Herwijnen A (2015) A process-based approach to estimate point snow instability. Cryosphere, 9, 837847 (doi: 10.5194/tc-9-837-2015, 2015)
Scapozza C (2004) Entwicklung eines dichte- und temperaturabhängigen Stoffgesetzes zur Beschreibung des visko-elastischen Verhaltens von Schnee. (PhD thesis, ETH Zürich)
Schneebeli M and Johnson JB (1998) A constant-speed penetrometer for high-resolution snow stratigraphy. Ann. Glaciol., 26, 107111
Schweizer J (1998) Laboratory experiments on shear failure of snow. Ann. Glaciol., 26, 97102
Schweizer J and Camponovo C (2002) The skier's zone of influence in triggering slab avalanches. Ann. Glaciol., 32, 314320 (doi: 10.3189/172756401781819300)
Schweizer J, van Herwijnen A and Reuter B (2011) Measurements of weak layer fracture energy. Cold Reg. Sci. Tech., 69(2–3), 139144 (doi: 10.1016/j.coldregions.2011.06.004)
Schweizer J, Reuter B, van Herwijnen A, Jamieson J and Gauthier D (2014) On how the tensile strength of the slab affects crack propagation propensity. Proceedings of the 2014 International Snow Science Workshop, Banff, AB, Canada, 164168
Sigrist C (2006) Measurement of fracture mechanical properties of snow and application to dry snow slab avalanches. (PhD thesis, ETH Zürich, diss). ETH No. 16736
Sigrist C and Schweizer J (2007) Critical energy release rates of weak snowpack layers determined in field experiments. Geophys. Res. Lett., 34, L03502 (doi: 10.1029/2006GL028576)
Szabo D and Schneebeli M (2007) Subsecond sintering of ice. Appl. Phys. Lett., 90(15), 151916
van Herwijnen A and Heierli J (2009) Measurement of crack-face friction in collapsed weak snow layers. Geophys. Res. Lett., 36(23), L23502, ISSN 0094-8276 (doi: 10.1029/2009GL040389)
van Herwijnen A and Heierli J (2010) A field method for measuring slab stiffness and weak layer fracture energy. Proceedings of the International Snow Science Workshop, Lake Tahoe, CA, USA, 2010, 232237
van Herwijnen A and Jamieson B (2005) High-speed photography of fractures in weak snowpack layers. Cold Reg. Sci. Technol., 43(1–2), 7182 (doi: 10.1016/j.coldregions.2005.05.005)
van Herwijnen A and Miller D (2013) Experimental and numerical investigation of the sintering rate of snow. J. Glaciol., 59(214), 269274, ISSN 0022-1430 (doi: 10.3189/2013JoG12J094)
van Herwijnen A, Schweizer J and Heierli J (2010) Measurement of the deformation field associated with fracture propagation in weak snowpack layers. J. Geophys. Res. Earth, 115, F03042, ISSN 0148-0227 (doi: 10.1029/2009JF001515)
Zeidler A and Jamieson B (2006) Refinements of empirical models to forecast the shear strength of persistent weak snow layers PART A: layers of faceted crystals. Cold Reg. Sci. Tech., 44(3), 184193 (doi: 10.1016/j.coldregions.2005.11.005)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 29
Total number of PDF views: 184 *
Loading metrics...

Abstract views

Total abstract views: 247 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2018. This data will be updated every 24 hours.