Skip to main content Accessibility help
×
Home

Estimation of present-day glacial isostatic adjustment, ice mass change and elastic vertical crustal deformation over the Antarctic ice sheet

  • BAOJUN ZHANG (a1), ZEMIN WANG (a1), FEI LI (a1), JIACHUN AN (a1), YUANDE YANG (a1) and JINGBIN LIU (a2) (a3) (a4)...

Abstract

This study explores an iterative method for simultaneously estimating the present-day glacial isostatic adjustment (GIA), ice mass change and elastic vertical crustal deformation of the Antarctic ice sheet (AIS) for the period October 2003–October 2009. The estimations are derived by combining mass measurements of the GRACE mission and surface height observations of the ICESat mission under the constraint of GPS vertical crustal deformation rates in the spatial domain. The influence of active subglacial lakes on GIA estimates are mitigated for the first time through additional processing of ICESat data. The inferred GIA shows that the strongest uplift is found in the Amundsen Sea Embayment (ASE) sector and subsidence mostly occurs in Adelie Terre and the East Antarctica inland. The total GIA-related mass change estimates for the entire AIS, West Antarctica Ice Sheet (WAIS), East Antarctica Ice Sheet (EAIS), and Antarctic Peninsula Ice Sheet (APIS) are 43 ± 38, 53 ± 24, −23 ± 29 and 13 ± 6 Gt a−1, respectively. The overall ice mass change of the AIS is −46 ± 43 Gt a−1 (WAIS: −104 ± 25, EAIS: 77 ± 35, APIS: −20 ± 6). The most significant ice mass loss and most significant elastic vertical crustal deformations are concentrated in the ASE and northern Antarctic Peninsula.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of present-day glacial isostatic adjustment, ice mass change and elastic vertical crustal deformation over the Antarctic ice sheet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of present-day glacial isostatic adjustment, ice mass change and elastic vertical crustal deformation over the Antarctic ice sheet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of present-day glacial isostatic adjustment, ice mass change and elastic vertical crustal deformation over the Antarctic ice sheet
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Correspondence: Zemin Wang <zmwang@whu.edu.cn>

References

Hide All
Argus, DF, Peltier, WR, Drummond, R and Moore, AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int., 198(1), 537563 (doi: 10.1093/gji/ggu140)
Chen, JL, Wilson, CR, Tapley, BD and Grand, S (2007) GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys. Res. Lett., 34(13) (doi: 10.1029/2007GL030356)
Cheng, M, Tapley, BD and Ries, JC (2013) Deceleration in the Earth's oblateness. J, Geophys. Res.: Solid Earth, 118(2), 740747 (doi: 10.1002/jgrb.50058)
Claerbout, JF and Muir, F (1973) Robust modeling with erratic data. Geophysics, 38(5), 826844 (doi: 10.1190/1.1440378)
Ewert, H, Groh, A and Dietrich, R (2012) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodynam., 59, 111123 (doi: 10.1016/j.jog.2011.06.003)
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/science.1136897)
Gao, CC, Yang, LU, Zhang, ZZ, Shi, HL and Zhu, CD (2015) Ice sheet mass balance in Antarctica measured by GRACE and its uncertainty. Chinese J. Geophysics, 58(3), 780792 (doi: 10.6038/cjg20150308)
Geruo, A, Wahr, J and Zhong, S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int., 192(2), 557572 (doi: 10.1093/gji/ggs030)
Groh, A and 6 others (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea Sector, West Antarctica. Global Planet. Change, 98, 4553 (doi: 10.1016/j.gloplacha.2012.08.001)
Gunter, BC and 6 others (2014) Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere, 8(2), 74 (doi: 10.5194/tc-8-743-2014)
Kaspers, KA and 5 others (2004) Model calculations of the age of firn air across the Antarctic continent. Atmos. Chem. Phys., 4, 13651380 (doi: 10.5194/acp-4-1365-2004)
Klees, R and 6 others (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys. J. Int., 175, 417432 (doi: 10.1111/j.1365-246X.2008.03922.x)
Larter, R and 14 others (2007) West Antarctic ice sheet change since the last glacial period. EOS Trans. Am. Geophys. Union 88, 189196 (doi: 10.1029/2007EO170001)
Lenaerts, JTM, Den Broeke, MR, Berg, WJ, Meijgaard, EV and Kuipers, MP (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4) (doi: 10.1029/2011GL050713)
Ligtenberg, SRM, Heilsen, MM and van de Broeke, MR (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere, 5(4), 809819 (doi: 10.5194/tc-5-809-2011)
Liu, X and 7 others (2010) DEOS mass transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys. J. Int., 181(2), 769788 (doi: 10.1111/j.1365-246X.2010.04533.x)
McMillan, M and 6 others (2016) A high-resolution record of Greenland mass balance. Geophys. Res. Lett., 43(13), 70027010 (doi: 10.1002/2016GL069666)
Morelli, A and Danesi, S (2004) Seismological imaging of the Antarctic continental lithosphere: a review. Global Planet. Change, 42, 155165 (doi: 10.1016/j.gloplacha.2003.12.005)
Mitrovica, JX, Tamisiea, ME, Davis, JL and Milne, GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409(6823), 10261029 (doi: 10.1038/35059054)
Nield, GA, Whitehouse, PL, King, MA, Clarke, PJ and Bentley, MJ (2012) Increased ice loading in the Antarctic Peninsula since the 1850s and its effect on glacial isostatic adjustment. Geophys.Res. Lett., 39, L17504 (doi: 10.1029/2012GL052559)
Paulson, A, Zhong, S and Wahr, J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int., 171(2), 497508 (doi: 10.1111/j.1365-246X.2007.03556.x)
Peltier, WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149 (doi: 10.1146/annurev.earth.32.082503.144359)
Rignot, E and 6 others (2008) Recent antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1(2), 106110 (doi: 10.1038/ngeo102)
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic ice sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Riva, REM and 6 others (2009) Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet. Sci. Letters, 288(3), 516523 (doi: 10.1016/j.epsl.2009.10.013)
Sergienko, OV, MacAyeal, DR and Bindschadler, RA (2007) Causes of sudden, short-term changes in ice-stream surface elevation. Geophys. Res. Lett., 34(22), L22503. (doi: 10.1029/2007GL031775)
Shepherd, A and 6 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Smith, BE, Fricker, HA, Joughin, IR and Tulaczyk, S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573595 (doi: 10.3189/002214309789470879)
Smith, WHF and Wessel, P (1990) Gridding with continuous curvature splines in tension. Geophysics, 55, 293305 (doi: 10.1190/1.1442837)
Swenson, S, Chambers, D and Wahr, J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res.: Solid Earth, 113(B8) (doi: 10.1029/2007JB005338)
Thomas, ID and 6 others (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett., 38(22) (doi: 10.1029/2011GL049277)
Velicogna, I and Wahr, J (2002) A method for separating Antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data. J. Geophys. Res.: Solid Earth, 107(B10) (doi: 10.1029/2001JB000708)
Velicogna, I and Wahr, J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 17541756 (doi: 10.1126/science.1123785)
Wahr, J, Molenaar, M and Bryan, F (1998) Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res.: Solid Earth, 103(B12), 3020530229 (doi: 10.1029/98JB02844)
Wahr, J, Wingham, D and Bentley, C (2000) A method of combining icesat and grace satellite data to constrain antarctic mass balance. J. Geophys. Res. Solid Earth, 105(105), 1627916294 (doi: 10.1029/2000JB900113)
Whitehouse, PL, Bentley, MJ, Milne, GA, King, MA and Thomas, ID (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int., 190(3), 14641482 (doi: 10.1111/j.1365-246X.2012.05557.x)
Wright, A and Siegert, M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct. Sci., 24, 659664 (doi: 10.1017/S095410201200048X)
Zwally, HJ and 6 others (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509527 (doi: 10.3189/172756505781829007)
Zwally, HJ, Mario, BG, Matthew, B and Jack, LS (2012a) Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences Laboratory. http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php
Zwally, HJ and 7 others (2012b) GLAS/ICESat L2 Antarctic and Greenland ice sheet altimetry data, version 34, GLA12. NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed