Skip to main content Accessibility help
×
×
Home

The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics

  • KERRY KEY (a1) (a2) and MATTHEW R. SIEGFRIED (a1) (a3)
Abstract

Subglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here, we study the feasibility of passive- and active-source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques, such as ground-penetrating radar and active seismic surveying, EM data have the potential to provide new insights on the interaction between ice, rock and water at critical ice-sheet boundaries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Kerry Key <kkey@ldeo.columbia.edu>
References
Hide All
Alley, KE, Scambos, TA, Siegfried, MR and Fricker, HA (2016) Impacts of warm water on basal channel formation and links to Antarctic ice shelf stability. Nat. Geosci., 9(4), 290293 (doi: 10.1038/ngeo2675)
Alley, RB, Anandakrishnan, S, Bentley, CR and Lord, N (1994) A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica. Ann. Glaciol., 20(1), 187194
Anandakrishnan, S and Alley, RB (1997) Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett., 24(3), 265268
Archie, G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Eng., 146, 5461
Baba, K, Chave, AD, Evans, RL, Hirth, G and Mackie, RL (2006) Mantle dynamics beneath the East Pacific Rise at 17°S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J. Geophys. Res., 111(B2), (doi: 10.1029/2004jb003598)
Beblo, M and Liebig, V (1990) Magnetotelluric measurements in Antarctica. Phys. Earth Planet. Inter., 60(1–4), 8999 (doi: 10.1016/0031-9201(90)90251-r)
Bell, RE (2008) The role of subglacial water in ice-sheet mass balance. Nat. Geosci., 1(5), 297304
Bentley, CR (1977) Electrical resistivity measurements on the Ross Ice Shelf. J. Glaciol., 18(78)
Bentley, CR, Jezek, KC, Blankenship, DD, Lovell, JS and Albert, DG (1979) Geophysical investigation of the Dome C area, Antarctica. Antarct. J. USA, 14(5), 98100
Blankenship, DD, Bentley, CR, Rooney, ST and Alley, RB (1986) Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 5457 (doi: 10.1038/322054a0)
Blankenship, DD, Bentley, C, Rooney, S and Alley, RB (1987) Till beneath ice stream b: 1. properties derived from seismic travel times. J. Geophys. Res. Solid Earth (1978–2012), 92(B9), 89038911
Brace, WF and Orange, AS (1968) Further studies of effects of pressure on electrical resistivity of rocks. J. Geophys. Res. Solid Earth, 73(16), 54075420
Carter, SP and Fricker, HA (2012) The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol., 53(60), 267280 (doi: 10.3189/2012aog60a119)
Carter, SP, Fricker, HA and Siegfried, MR (2017) Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains. Cryosphere, 11, 381405 (doi: 10.5194/tc-11-381-2017)
Chave, AD and Cox, CS (1982) Controlled electromagnetic sources for measuring electrical-conductivity beneath the oceans. 1. Forward problem and model study. J. Geophys. Res. Solid Earth, 87, 53275338
Chave, AD and Jones, AG (2012) The magnetotelluric method: theory and practice. Cambridge University Press, Cambridge
Christiansen, AV, Auken, E and Sørensen, K (2006) The transient electromagnetic method. In Groundwater geophysics. Springer Science Business Media, Springer-Verlag, Berlin, Heidelberg, 179225
Christianson, K, Jacobel, RW, Horgan, HJ, Anandakrishnan, S and Alley, RB (2012) Subglacial Lake Whillans — Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett., 331–332, 237245 (doi: 10.1016/j.epsl.2012.03.013)
Christner, BC and 11 others (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 512(7514), 19 (doi: 10.1038/nature13667)
Christoffersen, P and Tulaczyk, S (2003) Response of subglacial sediments to basal freeze-on 1. Theory and comparison to observations from beneath the West Antarctic Ice Sheet. J. Geophys. Res. Solid Earth, 108(B4)
Christoffersen, P, Bougamont, M, Carter, SP, Fricker, HA and Tulaczyk, S (2014) Significant groundwater contribution to Antarctic ice streams hydrologic budget. Geophys. Res. Lett., 41(6), 20032010 (doi: 10.1002/2014gl059250)
Danielsen, JE, Auken, E, Jørgensen, F, Søndergaard, V and Sørensen, KI (2003) The application of the transient electromagnetic method in hydrogeophysical surveys. J. Appl. Geophys., 53(4), 181198 (doi: 10.1016/j.jappgeo.2003.08.004)
Dowdeswell, JA and Evans, S (2004) Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Rep. Prog. Phys., 67(10), 1821
Dowdeswell, JA and Siegert, MJ (1999) The dimensions and topographic setting of Antarctic subglacial lakes and implications for large-scale water storage beneath continental ice sheets. Geol. Soc. Am. Bull., 111(2), 254263
Dugan, HA and 7 others (2015) Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake. Geophys. Res. Lett., 42(1), 96103 (doi: 10.1002/2014gl062431)
Elsworth, CW and Suckale, J (2016) Subglacial drainage may induce rapid ice flow rearrangement in West Antarctica. Geophys. Res. Lett. (doi: 10.1002/2016GL070430)
Engelhardt, H and Kamb, B (1997) Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol., 43(144), 207230
Foley, N and 7 others (2015) Helicopter-borne transient electromagnetics in high-latitude environments: an application in the McMurdo Dry Valleys, Antarctica. Geophysics, 81(1), WA87WA99 (doi: 10.1190/geo2015-0186.1)
Fricker, HA and Scambos, T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303315
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 1544
Garcia, X and Jones, AG (2010) Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands, from land magnetotelluric imaging. J. Geophys. Res., 115(B7) (doi: 10.1029/2009jb006445)
Gladish, CV, Holland, DM, Holland, PR and Price, SF (2012) Ice-shelf basal channels in a coupled ice/ocean model. J. Glaciol., 58(212), 12271244 (doi: 10.3189/2012jog12j003)
Goodwin, ID (1988) The nature and origin of a jökulhlaup near Casey Station, Antarctica. J. Glaciol. (doi: 10.3198/1988JoG34-116-95-101)
Gorman, MR and Siegert, MJ (1999) Penetration of Antarctic subglacial lakes by VHF electromagnetic pulses: information on the depth and electrical conductivity of basal water bodies. J. Geophys. Res., 104(B12), 2931129320 (doi: 10.1029/1999JB900271)
Gray, L and 5 others (2005) Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(3), L03501, ISSN 0094-8276
Hessler, VP and Jacobs, J (1966) A telluric current experiment on the Antarctic ice cap. Nature, 210, 190191 (doi: 10.1038/210190a0)
Hochstein, M (1967) Electrical resistivity measurements on ice sheets. J. Glaciol., 6(47), 623633
Horgan, HJ and 7 others (2012) Subglacial Lake Whillans – Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett., 331, 201209
Horgan, HJ and 7 others (2013) Estuaries beneath ice sheets. Geology, 41(11), 11591162 (doi: 10.1130/G34654.1)
Hubbard, A, Lawson, W and Anderson, B (2004) Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Ann. Glaciol., 39(1), 7984 (doi: 10.3189/172756404781813970)
Jenkins, A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 22792294 (doi: 10.1175/jpo-d-11-03.1)
Joughin, I, Shean, DE, Smith, BE and Dutrieux, P (2016) Grounding line variability and subglacial lake drainage on Pine Island Glacier, Antarctica. Geophys. Res. Lett. (doi: 10.1002/2016GL070259)
Kamb, B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)
Kapitsa, AP, Ridley, JK, Robin, GQ, Siegert, MJ and Zotikov, IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature, 381, 684686
Kennicutt, MC and 74 others (2014) A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci., 27(01), 318 (doi: 10.1017/S0954102014000674)
Key, K (2012) Is the fast Hankel transform faster than quadrature? Geophysics, 77(3), F21F30 (doi: 10.1190/geo2011-0237.1)
Key, K (2016) MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys. J. Int., 207(1), 571588 (doi: 10.1093/gji/ggw290)
Key, K and Ovall, J (2011) A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys. J. Int., 186(1), 137154 (doi: 10.1111/j.1365-246x.2011.05025.x)
Key, K, Constable, S, Liu, L and Pommier, A (2013) Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature, 495(7442), 499502 (doi: 10.1038/nature11932)
Kirsch, R (2006) Groundwater geophysics: a tool for hydrogeology. Springer-Verlag, Berlin, Heidelberg
Kulessa, B (2007) A critical review of the low-frequency electrical properties of ice sheets and glaciers. J. Environ. Eng. Geophys., 12(1), 2336
Le Brocq, AM and 10 others (2013) Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci., 6(11), 945948 (doi: 10.1038/ngeo1977)
Lliboutry, L (1964) Sub-glacial ‘Supercavitation’ as a cause of the rapid advances of glaciers. Nature, 202(4927), 77
Marsh, OJ and 6 others (2016) High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett., 43(1), 250255 (doi: 10.1002/2015gl066612)
Meqbel, NMM, Ritter, O and Group, D (2013) A magnetotelluric transect across the Dead Sea Basin: electrical properties of geological and hydrological units of the upper crust. Geophys. J. Int., 193(3), 14151431 (doi: 10.1093/gji/ggt051)
Michaud, AB and 7 others (2016) Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology, 44(5), 347350 (doi: 10.1130/G37639.1)
Mikucki, JA and 8 others (2015) Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun., 6, 6831 (doi: 10.1038/ncomms7831)
Millgate, T, Holland, PR, Jenkins, A and Johnson, HL (2013) The effect of basal channels on oceanic ice-shelf melting. J. Geophys. Res. Oceans, 118(12), 69516964 (doi: 10.1002/2013jc009402)
Muto, A, Christianson, K, Horgan, HJ, Anandakrishnan, S and Alley, RB (2013) Bathymetry and geological structures beneath the Ross Ice Shelf at the mouth of Whillans Ice Stream, West Antarctica, modeled from ground-based gravity measurements. J. Geophys. Res. Solid Earth, 118(8), 45354546
Nabighian, MN (ed.) (1987) Electromagnetic methods in applied geophysics – theory, Volume 1. Society of Exploration Geophysicists, Tulsa
Naif, S, Key, K, Constable, S and Evans, RL (2013) Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature, 495(7441), 356359 (doi: 10.1038/nature11939)
Nenna, V, Herckenrath, D, Knight, R, Odlum, N and McPhee, D (2013) Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: seaside Groundwater Basin, California. Geophysics, 78(2), B77B88 (doi: 10.1190/geo2012-0004.1)
Nichols, EA, Morrison, HF and Clarke, J (1988) Signals and noise in measurements of low-frequency geomagnetic fields. J. Geophys. Res. Solid Earth, 93(11), 13794–13754
Parizek, R, Alley, RB and Hulbe, CL (2003) Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Ann. Glaciol., 36(1), 251256
Peacock, JR and Selway, K (2016) Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica. J. Geophys. Res. Solid Earth (doi: 10.1002/(ISSN)2169-9356)
Perkin, R and Lewis, E (1980) The practical salinity scale 1978: fitting the data. IEEE J. Ocean. Eng., 5(1), 916 (doi: 10.1109/joe.1980.1145441)
Petrenko, VF and Whitworth, RW (2002) Physics of ice. Oxford University Press, Oxford (doi: 10.1093/acprof:oso/9780198518945.001.0001)
Pirjola, RJ (1998) Modelling the electric and magnetic fields at the Earth's surface due to an auroral electrojet. J. Atmos. Sol.-Terr. Phys., 60(11), 11391148 (doi: 10.1016/s1364-6826(98)00070-4)
Reynolds, JM and Paren, JG (1984) Electrical resistivity of ice from the Antarctic Peninsula, Antarctica. J. Glaciol., 30(106), 289295
Rignot, E and Steffen, K (2008) Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35(2) (doi: 10.1029/2007gl031765)
Robin, GdQ (1955) Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol., 2(18), 523532
Röthlisberger, H (1972) Water pressure in intra- and subglacial channels. J. Glaciol., 11, 177203
Ruotoistenmäki, T and Lehtimäki, J (1997) Estimation of permafrost thickness using ground geophysical measurements, and its usage for defining vertical temperature variations in continental ice and underlying bedrock. J. Glaciol., 43(1), 359364
Scambos, TA, Berthier, E and Shuman, CA (2011) The triggering of subglacial lake drainage during rapid glacier drawdown: crane Glacier, Antarctic Peninsula. Ann. Glaciol., 52(59), 7482
Schroeder, DM, Blankenship, DD, Raney, RK and Grima, C (2015) Estimating subglacial water geometry using radar bed echo specularity: application to Thwaites Glacier, West Antarctica. IEEE Geosci. Remote Sens. Lett., 12(3), 443447
Sergienko, OV (2013) Basal channels on ice shelves. J. Geophys. Res. Earth Surf., 118(3), 13421355 (doi: 10.1002/jgrf.20105)
Shabtaie, S and Bentley, CR (1994) Electrical resistivity measurements on ice stream. B, Antarctica. Ann. Glaciol., 20(1), 129136 (doi: 10.3189/172756494794587465)
Shabtaie, S, Bentley, CR, Blankenship, DD, Lovell, JS and Gassett, RM (1980) Dome c geophysical survey, 1979–80. Antarct. J. USA, 15(5), 25
Siegert, MJ and Bamber, JL (2000) Subglacial water at the heads of Antarctic ice-stream tributaries. J. Glaciol., 46, 702703
Siegert, MJ, Carter, S, Tabacco, I, Popov, S and Blankenship, DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct. Sci., 17(03), 453460
Siegert, MJ, Popov, S and Studinger, M (2011) Subglacial Lake Vostok: a review of geophysical data regarding its physiographical setting. In Siegert, M, Kennicutt, C and Bindschadler, B, eds. Subglacial antarctic aquatic environments. AGU Geophysical Monograph 192, Washington, DC, 4560
Siegert, MJ and 8 others (2014) Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet. Cryosphere, 8(1), 1524 (doi: 10.5194/tc-8-15-2014)
Siegert, MJ and 7 others (2017) Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. In Siegert, MJ, Jamieson, S and White, D, eds. Exploration of subsurface Antarctica uncovering past changes and modern processes, Geological Society, London (doi: 10.17863/CAM.8570)
Siegfried, MR, Fricker, HA, Roberts, M, Scambos, TA and Tulaczyk, S (2014) A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophys. Res. Lett., 41(3), 891898 (doi: 10.1002/2013GL058616)
Siegfried, MR, Fricker, HA, Carter, SP and Tulaczyk, S (2016) Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett., 43(6), 26402648 (doi: 10.1002/2016GL067758)
Smith, AM (1997) Basal conditions on Rutford ice stream, West Antarctica, from seismic observations. J. Geophys. Res. Solid Earth, 102(B1), 543552
Smith, BE, Fricker, HA, Joughin, IR and Tulaczyk, S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573595, ISSN 0022-1430
Smith, BE, Gourmelen, N, Huth, A and Joughin, I (2016) Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica. Cryosphere Discuss. (doi: 10.5194/tc-2016-180)
Spigel, RH and Priscu, JC (1996) Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lake. Hydrobiologia, 321, 177190
Stearns, LA, Smith, BE and Hamilton, GS (2008) Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci., 1(12), 827831
Tabacco, I, Cianfarra, P, Forieri, A, Salvini, F and Zirizotti, A (2006) Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int., 165(3), 10291040
Tulaczyk, S and 15 others and the WISSARD Science Team (2014) WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann. Glaciol., 55(65), 5158 (doi: 10.3189/2014AoG65A009)
Unsworth, M, Egbert, G and Booker, J (1999) High-resolution electromagnetic imaging of the San Andreas Fault in central California. J. Geophys. Res., 104(B1), 11311150 (doi: 10.1029/98jb01755)
Vaughan, DG, Corr, HF, Smith, AM, Pritchard, HD and Shepherd, A (2008) Flow-switching and water piracy between Rutford Ice Stream and Carlson Inlet, West Antarctica. J. Glaciol., 54(184), 4148
Vaughan, DG and 8 others (2012) Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. J. Geophys. Res., 117(F3) (doi: 10.1029/2012jf002360)
Vick-Majors, TJ (2016) Biogeochemical processes in Antarctic aquatic environments: linkages and limitations . (PhD thesis, Montana State University, Bozeman, MT)
Wadham, JL and 12 others (2012) Potential methane reservoirs beneath Antarctica. Nature, 488(7413), 633637 (doi: 10.1038/nature11374)
Wadham, JL and 6 others (2013) The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth Environ. Sci. Trans. R. Soc. Edinb., 104(01), 5567
Walker, RT and 5 others (2013) Ice-shelf tidal flexure and subglacial pressure variations. Earth Planet. Sci. Lett., 361, 422428
Wannamaker, PE, Stodt, JA and Olsen, SL (1996) Dormant state of rifting below the Byrd Subglacial Basin, West Antarctica, implied by magnetotelluric (MT) profiling. Geophys. Res. Lett., 23(21), 29832986 (doi: 10.1029/96gl02887)
Wannamaker, PE, Stodt, JA, Pellerin, L, Olsen, SL and Hall, DB (2004) Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements. Geophys. J. Int., 157(1), 3654 (doi: 10.1111/j.1365-246x.2004.02156.x)
Wannamaker, PE and 10 others (2012) Magnetotelluric transect of the central transantarctic mountains. In 21st EM induction workshop extended abstract, Darwin, Australia
Ward, SH and Hohmann, GW (1987) Electromagnetic theory for geophysical applications. In Nabighian, MN, ed. Electromagnetic methods in applied geophysics. Soc. Exploration Geophysicists, Tulsa, 131312
Weertman, J (1964) The theory of glacier sliding. J. Glaciol., 5(39), 287303
Wingham, DJ, Siegert, MJ, Shepherd, A and Muir, AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440(7087), 10331036
Woodward, J and 9 others (2010) Location for direct access to subglacial Lake Ellsworth: an assessment of geophysical data and modeling. Geophys. Res. Lett., 37(11), n/a–n/a (doi: 10.1029/2010GL042884)
Wright, A and Siegert, M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct. Sci., 24(06), 659664 (doi: 10.1017/s095410201200048x).
Zonge, KL and Hughes, LJ (1985) The effect of electrode contact resistance on electric field measurements. In SEG technical program expanded abstracts 1985. Society of Exploration Geophysicists, 231234
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed