Skip to main content
    • Aa
    • Aa

First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images

  • L. Ruiz (a1), E. Berthier (a2), M. Masiokas (a1), P. Pitte (a1) and R. Villalba (a1)...

We apply cross-correlation to Pléiades satellite images to generate accurate, high-resolution monthly surface velocity maps of Monte Tronador glaciers between March and June 2012. Measured surface displacements cover periods as short as 19 days, with a precision of ∼0.58 m (11 m a−1). These glaciers follow a radial flow pattern, with maximum surface speeds of ∼390 m a−1 associated with steep icefalls. The lower reaches of the debris-covered tongues of Verde and Casa Pangue glaciers are almost stagnant, whereas Ventisquero Negro, another debris-covered glacier, shows acceleration at the front due to calving into a proglacial lake. Low-elevation debris-covered glacier tongues show increasing velocities at the beginning of the accumulation season, whereas higher-elevation, clean-ice tongues reduce their speed during this period. This contrasting behavior is probably in response to an increase in water input to the subglacial system from winter rainfall events at low elevations and a decrease in meltwater production at higher elevations. These sequential velocity maps can help to identify the controls on glacier surface velocity, aid in the delimitation of ice divides and could also contribute to more realistic calibration of ice-flux-mass–balance models in this glacierized area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images
      Available formats
Corresponding author
Correspondence: Lucas Ruiz
Hide All
BartholomausTC, AndersonRS and AndersonSP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337 (doi: 10.1038/ngeo.2007.52)
BerthierE and VincentC (2012) Relative contribution of surface mass balance and ice flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008. J. Glaciol., 58(209), 501512 (doi: 10.3189/2012JoG11J083)
BerthierE, RaupB and ScambosT (2003) New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J. Glaciol., 49(167), 503511 (doi: 10.3189/172756503781830377)
BerthierE and 7 others (2005) Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ., 95(1), 1428 (doi: 10.1016/j.rse.2004.11.005)
BerthierE and 10 others (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere, 8(6), 22752291 (doi: 10.5194/tc-8-2275-2014)
BindschadlerR and ScambosTA (1991) Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252, 242246
BownF (2004) Cambios climáticos en la Región de Los Lagos y respuestas recientes del Glaciar Casa Pangue (41°08′S). (Memoria de Magister en Geografía, Universidad de Chile)
BownF and RiveraA (2007) Climate changes and recent glacier behaviour in the Chilean Lake District. Global Planet. Change, 59(1–4), 7986 (doi: 10.1016/j.gloplacha.2006.11.015)
CarrascoJF, CasassaG and QuintanaJ (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century/Changements de l’isotherme 0°C et de la ligne d’équilibre des neiges dans le Chili central durant le dernier quart du 20ème siècle. Hydrol. Sci. J., 50(6), 933948 (doi: 10.1623/hysj.2005.50.6.933)
CarrascoJF, OsorioR and CasassaG (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J. Glaciol., 54(186), 538550 (doi: 10.3189/002214308785837002)
CondomT, CoudrainA, SicartJE and ThéryS (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10°N–55°S). Global Planet. Change, 59(1–4), 189202 (doi: 10.1016/j.gloplacha.2006.11.021)
CuffeyKM and PatersonWSB (2010) The physics of glaciers, 4th edn. Academic Press, Amsterdam
DelacourtC and 7 others (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull. Soc. Géol. Fr., 178(2) (doi: 10.2113/gssgfbull.178.2.89)
FarinottiD, CorrH and GudmundssonGH (2013) The ice thickness distribution of Flask Glacier, Antarctic Peninsula, determined by combining radio-echo soundings, surface velocity data and flow modelling. Ann. Glaciol., 54(63), 1824 (doi: 10.3189/2013AoG63A603)
GarreaudRD (2009) The Andes climate and weather. Adv. Geosci. 22(22), 311
GleyzesMA, PerretL and KubikP (2012) Pléiades system architecture and main performances. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 39, B1
HeidT and KääbA (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere, 6, 467478 (doi: 10.5194/tc-6-467-2012)
HockR (1999) A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101111
HöhleJ and HöhleM (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens., 64(4), 398406 (doi: 10.1016/j.isprsjprs.2009.02.003)
HookeRLeB, CallaP, HolmlundP, NilssonM and StroevenA (1989) A 3 year record of seasonal variations in surface velocity, Storglaciären, Sweden. J. Glaciol., 35(120), 235247
IkenA and BindschadlerRA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119
IkenA and TrufferM (1997) The relationship between subglacial water pressure and velocity of Findelengletscher, Switzerland, during its advance and retreat. J Glaciol, 43(144), 328338
JoughinI (2002) Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 34, 195201 (doi: 10.3189/172756402781817978)
JoughinI, SmithBE, SheanDE and FloricioiuD (2014) Brief Communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere, 8(1), 209214 (doi: 10.5194/tc-8-209-2014)
LacroixP, BerthierE and MaquerhuaET (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens. Environ., 165, 148–158 (doi: 10.1016/j.rse.2015.05.010)
LebègueL and 10 others (2013) PLEIADES satellites image quality commissioning. In ButlerJJ, XiongX and GuX eds Earth Observing Systems XVIII, 88660Z (doi: 10.1117/12.2023288)
LeclercqPW, PitteP, GiesenRH, MasiokasMH and OerlemansJ (2012) Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD. Climate Past, 8(5), 13851402 (doi: 10.5194/cp-8-1385-2012)
LeprinceS, BarbotS, AyoubF and AvouacJP (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images: application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens., 45(6), 15291557 (doi: 10.1109/TGRS.2006.888937)
MasiokasMH, VillalbaR, LuckmanBH, LascanoME, DelgadoS and StepanekP (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global Planet. Change, 60(1–2), 85100 (doi: 10.1016/j.gloplacha.2006.07.031)
MasiokasMH, RiveraA, EspizuaLE, VillalbaR, DelgadoS and AravenaJC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281(3–4), 242268 (doi: 10.1016/j.palaeo.2009.08.006)
MasiokasMH, LuckmanBH, VillalbaR, RipaltaA and RabassaJ (2010) Little Ice Age fluctuations of Glaciar Río Manso in the north Patagonian Andes of Argentina. Quat. Res., 73(1), 96106 (doi: 10.1016/j.yqres.2009.08.004)
McNabbRW and 11 others (2012) Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. J. Glaciol., 58(212), 11511164 (doi: 10.3189/2012JoG11J249)
MelkonianAK, WillisMJ, PritchardME, RiveraA, BownF and BernsteinSA (2013) Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere, 7(3), 823839 (doi: 10.5194/tc-7-823-2013)
MichelR and RignotE (1999) Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry. J. Glaciol., 45(149), 93100
NaruseR, FukamiH and AniyaM (1992) Short-term variations in flow velocity of Glaciar Soler, Patagonia, Chile. J. Glaciol., 38(128), 152156
NienowP, SharpM and WillisI (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landf., 23(9), 825843 (doi: 10.1002/(SICI)1096-9837(199809)23:9<825::AID-ESP893>3.0.CO;2-2)
NuthC, SchulerTV, KohlerJ, AltemaB and HagenJO (2012) Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J. Glaciol., 58(207), 119133 (doi: 10.3189/2012JoG11J036)
OerlemansJ (2001) Glaciers and climate change. AA Balkema, Rotterdam
PaulF and MölgN (2014) Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J. Glaciol., 60(224) 10331043 (doi: 10.3189/2014JoG14J104)
RabassaJ, RubulisS and SuarezJ (1978) Los glaciares del Monte Tronador. An. Parq. Nac., 14, 259318
RiveraA, BownF, CarriónD and ZentenoP (2012) Glacier responses to recent volcanic activity in Southern Chile. Environ. Res. Lett., 7(1), 014036 (doi: 10.1088/1748-9326/7/1/014036)
RiverosN, EuilladesL, EuilladesP, MoreirasS and BalbaraniS (2013) Offset tracking procedure applied to high resolution SAR data on Viedma Glacier, Patagonian Andes, Argentina. Adv. Geosci., 35, 7–13 (doi: 10.5194/adgeo-35-7-2013)
SakakibaraD and SugiyamaS (2014) Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011: calving glaciers in southern Patagonia. J. Geophys. Res. Earth Surf., 119(11), 25412554 (doi: 10.1002/2014JF003148)
SakakibaraD, SugiyamaS, SawagakiT, MarinsekS and SkvarcaP (2013) Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Ann. Glaciol., 54(63), 131138 (doi: 10.3189/2013AoG63A236)
ScherlerD and StreckerMR (2012) Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J. Glaciol., 58(209), 569580 (doi: 10.3189/2012JoG11J096)
ScherlerD, LeprinceS and StreckerMR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery: accuracy improvement and quality assessment. Remote Sens. Environ., 112(10), 38063819 (doi: 10.1016/j.rse.2008.05.018)
SkvarcaP, RaupB and De AngelisH (2003) Recent behaviour of Glaciar Upsala, a fast-flowing calving glacier in Lago Argentino, southern Patagonia. Ann. Glaciol., 36, 184188 (doi: 10.3189/172756403781816202)
StumpfA, MaletJP, AllemandP and UlrichP (2014) Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote Sens., 95, 112 (doi: 10.1016/j.isprsjprs.2014.05.008)
SugiyamaS and GudmundssonH (2004) Short-term variations in glacier flow controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 50(170), 353362 (doi: 10.3189/172756504781829846)
SugiyamaS and 7 others (2011) Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nature Geosci., 4(9), 597600 (doi: 10.1038/ngeo1218)
VillalbaR, LeivaJC, RubullsS, SuarezJ and LenzanoL (1990) Climate, tree-ring, and glacial fluctuations in the Río Frías Valley, Río Negro, Argentina. Arct. Alp. Res., 22(3), 215 (doi: 10.2307/1551585)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 16 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 23rd October 2017. This data will be updated every 24 hours.