Skip to main content
×
×
Home

Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya

  • Patrick Wagnon (a1), Anurag Linda (a2), Yves Arnaud (a1), Rajesh Kumar (a3), Parmanand Sharma (a2), Christian Vincent (a4), Jose George Pottakkal (a2), Etienne Berthier (a5), Alagappan Ramanathan (a2), Syed Iqbal Hasnain (a6) and Pierre Chevallier (a7)...
Abstract

Little is known about the Himalayan glaciers, although they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring programme was started on Chhota Shigri Glacier (32.2° N, 77.5° E; 15.7 km2, 6263–4050 ma.s.l., 9 km long) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon–arid transition zone (western Himalaya) which is alternately influenced by Asian monsoon in summer and the mid-latitude westerlies in winter. Here we present the results of a 4 year study of mass balance and surface velocity. Overall specific mass balances are mostly negative during the study period and vary from a minimum value of –1.4 m w.e. in 2002/03 and 2005/06 (equilibrium-line altitude (ELA) ∼5180 m a.s.l.) to a maximum value of +0.1 m w.e. in 2004/05 (ELA 4855 m a.s.l.). Chhota Shigri Glacier seems similar to mid-latitude glaciers, with an ablation season limited to the summer months and a mean vertical gradient of mass balance in the ablation zone (debris-free part) of 0.7mw.e.(100 m)–1, similar to those reported in the Alps. Mass balance is strongly dependent on debris cover, exposure and the shading effect of surrounding steep slopes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya
      Available formats
      ×
Copyright
References
Hide All
Barnett, T.P. Adam, J.C. and D.P. Lettenmaier. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066 303309.
Berthier, E. Arnaud, Y. Kumar, R. Ahmad, S. Wagnon, P. and P. Chevallier. 2007. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3 327338.
Bishop, M.P. Kargel, J.S. Kieffer, H.H. MacKinnon, D.J. Raup, B.H. and J.F. Shroder, Jr. 2000. Remote-sensing science and technology for studying glacier processes in high Asia. Ann. Glaciol., 31, 164170.
Bookhagen, B. and Burbank, D.W.. 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33(8 L08405. (10.1029/2006GL026037.)
Dobhal, D.P. Kumar, S. and A.K. Mundepi. 1995. Morphology and glacier dynamics studies in monsoon–arid transition zone: an example from Chhota Shigri glacier, Himachal Himalaya, India. Current Sci., 68(9 936944.
Dohbal, D.P. Gergan, J.G. and R.J. Thayyen. 2007. Mass balance and snout recession measurements (1991–2000) of Dokriani Glacier, Garhwal Himalaya, India. In Mahé, G., ed. Climatic and anthropogenic impacts on the variability of water resources. Paris, UNESCO, 53–63. (Technical Document in Hydrology 80.) Dutt, G.N. 1961. The Bara Shigri Glacier, Kangra District, East Punjab, India. J. Glaciol., 3(30 10071015.
Dyurgerov, M.B. and Meier M.F. 2005. Glaciers and the changing Earth system: a 2004 snapshot. Boulder, CO, Institute of Arctic and Alpine Research. Occasional Paper 58.
Haeberli, W. Maisch, M. and F. Paul. 2002. Mountain glaciers in global climate-related observation networks. WMO Bull., 51(1 1825.
Harrison, W.D. Elsberg, D.H. Cox, L.H. and R.S. March. 2005. Correspondence. Different mass balances for climatic and hydrologic applications. J. Glaciol., 51(172 176.
Houghton, J.T. and 7 others. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge etc., Cambridge University Press.
Jansson, P. 1999. Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären. Geogr. Ann., 81A(4), 633642.
Kalnay, E. and 21 others. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3 437471.
Kaser, G. 2001. Glacier–climate interaction at low latitudes. J. Glaciol., 47(157 195204.
Kaser, G. Fountain, A. and P. Jansson. 2003. A manual for monitoring the mass balance of mountain glaciers. Paris, UNESCO. International Hydrological Programme. (IHP-VI. Technical Documents in Hydrology 59.)
Kaser, G. Cogley, J.G. Dyurgerov, M.B. Meier, M.F. and A. Ohmura. 2006. Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., 33(19 L19501. (10.1029/2006GL027511.)
Kulkarni, A.V. and 6 others. 2007. Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Sci., 92(1 6974.
Kumar, S. 1999. Chhota Shigri Glacier: its kinematic effects over the valley environment, in the northwest Himalaya. Current Sci., 77(4 594598.
Kumar, S. and Dobhal, D.P.. 1997. Climatic effects and bed rock control on rapid fluctuations of Chhota Shigri glacier, northwest Himalaya, India. J. Glaciol., 43(145 467472.
Mool, P.K. Wangda, D. Bajracharya, S.R. Kuzang, K. Gurung, D.R. and S.P. Joshi. 2001a. Inventory of glaciers, glacial lakes and glacial lake outburst floods: monitoring and early warning systems in the Hindu Kush-Himalayan region, Bhutan. Kathmandu, International Centre for Integrated Mountain Development.
Mool, P.K. Bajracharya, S.R. and S.P. Joshi. 2001b. Inventory of glaciers, glacial lakes and glacial lake outburst floods: monitoring and early warning systems in the Hindu Kush-Himalayan region, Nepal. Kathmandu, International Centre for Integrated Mountain Development.
Nijampurkar, V.N. and Rao, D.K.. 1992. Accumulation and flow rates of ice on Chhota Shigri glacier, central Himalaya, using radio-active and stable isotopes. J. Glaciol., 38(128 4350.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Paul, F. A. Kääb and W. Haeberli. 2007. Recent glacier changes in the Alps observed from satellite: consequences for future monitoring strategies. Global Planet. Change, 56(1–2 111122.
Rabatel, A. Dedieu, J.-P. and C. Vincent. 2005. Using remotesensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994–2002.J. Glaciol., 51(175 539546.
Roy, S.S. and Balling, R.C. Jr. 2005. Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophys. Res. Lett., 32(12 L12702. (10.1029/2004GL022201.)
Solomon, S. and 7 others, eds. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, etc., Cambridge University Press.
Tangborn, W. and Rana, B.. 2000. Mass balance and runoff of the partially debris-covered Langtang Glacier, Nepal. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 99108.
Wagnon, P. Ribstein, P. Francou, B. and B. Pouyaud. 1999. Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J. Geophys. Res., 104(D4 39073924.
Yadav, R.R. Park, W.-K. Singh, J. and B. Dubey. 2004. Do the western Himalayas defy global warming? Geophys. Res. Lett., 31(17 L17201. (10.1029/2004GL020201.)
Young, G.J. ed. 1993. IAHS Publ. 218. (Symposium at Kathmandu 1992 Snow and Glacier Hydrology.)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed