Skip to main content

Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia


Calving plays a key role in the recent rapid retreat of glaciers around the world. However, many processes related to calving are poorly understood since direct observations are scarce and challenging to obtain. When calving occurs at a glacier front, surface-water waves arise over the ocean or a lake in front of glaciers. To study calving processes from these surface waves, we performed field observations at Glaciar Perito Moreno, Patagonia. We synchronized time-lapse photography and surface waves record to confirm that glacier calving produces distinct waves compared with local noise. A total of 1074 calving events were observed over the course of 39 d. During austral summer, calving occurred twice more frequently than in spring. The cumulative distribution of calving-interevent time interval followed exponential model, implying random occurrence of events in time. We further investigated wave properties and found that source-to-sensor distance can be estimated from wave dispersion within ~20% error. We also found that waves produced by different calving types showed similar spectra in the same frequency range between 0.05–0.2 Hz, and that the amplitude of surface waves increased with the size of calving. This study demonstrates the potential of surface-wave monitoring for understanding calving processes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Masahiro Minowa <>
Hide All
Amundson, JM and 5 others (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22) (doi: 10.1029/2008GL035281)
Amundson, JM and 5 others (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res. Earth, 115(F1) (doi: 10.1029/2009JF001405)
Aniya, M, Sato, H, Naruse, R, Skvarca, P and Casassa, G (1997) Recent glacier variations in the Southern Patagonia icefield, South America. Arct. Alp. Res., 29(1), 112 (doi: 10.2307/1551831)
Arendt, AA, Echelmeyer, KA, Harrison, WD, Lingle, CS and Valentine, VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386 (doi: 10.1126/science.1072497)
Åström, JA and 10 others (2014) Termini of calving glaciers as self-organized critical systems. Nat. Geosci., 7, 874878 (doi: 10.1038/ngeo2290)
Bartholomaus, T, Larsen, C, O'Neel, S and West, M (2012) Calving seismicity from iceberg–sea surface interactions. J. Geophys. Res. Earth, 117(F4) (doi: 10.1029/2012JF002513)
Bartholomaus, T and 5 others (2015) Tidal and seasonal variations in calving flux observed with passive seismology. J. Geophys. Res. Earth, 120(11), 23182337 (doi: 10.1002/2015JF003641)
Bassis, J and Jacobs, S (2013) Diverse calving patterns linked to glacier geometry. Nat. Geosci., 6(10), 833836 (doi: 10.1038/ngeo1887)
Bassis, JN, Fricker, HA, Coleman, R and Minster, JB (2008) An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica. J. Glaciol., 54(184), 1727 (doi: 10.3189/002214308784409116)
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth Sci. Rev., 82(3), 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Boyce, ES, Motyka, RJ and Truffer, M (2007) Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA. J. Glaciol., 53(181), 211224 (doi: 10.3189/172756507782202928)
Bromirski, PD and Duennebier, FK (2002) The near-coastal microseism spectrum: spatial and temporal wave climate relationships. J. Geophys. Res. Solid Earth, 107(B8), ESE5–1ESE 5–20 (doi: 10.1029/2001JB000265)
Chapuis, A and Tetzlaff, T (2014) The variability of tidewater-glacier calving: origin of event-size and interval distributions. J. Glaciol., 60(222), 622634 (doi: 10.3189/2014JoG13J215)
Chen, X, Shearer, P, Walter, F and Fricker, H (2011) Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images. J. Geophys. Res. Solid Earth, 116(B6) (doi: 10.1029/2011JB008262)
De Angelis, H (2014) Hypsometry and sensitivity of the mass balance to changes in equilibrium-line altitude: the case of the Southern Patagonia Icefield. J. Glaciol., 60(219), 1428 (doi: 10.3189/2014JoG13J127)
Deane, GB, Glowacki, O, Tegowski, J, Moskalik, M and Blondel, P (2014) Directionality of the ambient noise field in an Arctic, glacial bay. J. Acoust. Soc. Am., 136(5), EL350EL356 (doi: 10.1121/1.4897354)
Dowdeswell, JA and Forsberg, CF (1992) The size and frequency of icebergs and bergy bits derived from tidewater glaciers in Kongsfjorden, northwest Spitsbergen. Polar Res., 11(2), 8191 (doi: 10.1111/j.1751-8369.1992.tb00414.x)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41(3), 866872 (doi: 10.1002/2013GL059010)
Gardner, AS and 9 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Glowacki, O and 5 others (2015) Underwater acoustic signatures of glacier calving. Geophys. Res. Lett., 42(3), 804812 (doi: 10.1002/2014GL062859)
Hanson, B and Hooke, RL (2003) Buckling rate and overhang development at a calving face. J. Glaciol., 49(167), 577586 (doi: 10.3189/172756503781830476)
Haresign, EC (2004) Glacio-limnological interactions at lake-calving glaciers. Ph.D. thesis, University of St Andrews
Horikawa, K and Kuo, CT (1966) A study on wave transformation inside surf zone. Coast. Eng. Proc., 1(10) (doi: 10.9753/icce.v10.%p)
Howat, IM, Joughin, I and Scambos, TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561 (doi: 10.1126/science.1138478)
Hunter, LE and Powell, RD (1998) Ice foot development at temperate tidewater margins in Alaska. Geophys. Res. Lett., 25(11), 19231926 (doi: 10.1029/98GL01403)
Iizuka, Y, Kobayashi, S and Naruse, R (2004) Water surface waves induced by calving events at Perito Moreno Glacier, southern Patagonia. Bull. Glaciol. Res., 21, 9196
Jacob, T, Wahr, J, Pfeffer, WT and Swenson, S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514518 (doi: 10.1038/nature10847)
James, TD, Murray, T, Selmes, N, Scharrer, K and O'Leary, M (2014) Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nat. Geosci., 7(8), 593596 (doi: 10.1038/ngeo2204)
Kirkbride, MP and Warren, CR (1997) Calving processes at a grounded ice cliff. Ann. Glaciol., 24, 116121
Köhler, A, Chapuis, A, Nuth, C, Kohler, J and Weidle, C (2012) Autonomous detection of calving-related seismicity at Kronebreen, Svalbard. Cryosphere, 6(2), 393406 (doi: 10.5194/tc-6-393-2012)
Köhler, A, Nuth, C, Schweitzer, J, Weidle, C and Gibbons, SJ (2015) Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard. Polar Res., 34 (doi: 10.3402/polar.v34.26178)
Köhler, A and 5 others (2016) A 15 year record of frontal glacier ablation rates estimated from seismic data. Geophys. Res. Lett., 43(23), 12,15512,164 (doi: 10.1002/2016GL070589)
Lamb, H (1932) Hydrodynamics. Cambridge University Press, Cambridge.
Larsen, C and 5 others (2015) Surface melt dominates Alaska glacier mass balance. Geophys. Res. Lett., 42(14), 59025908 (doi: 10.1002/2015GL064349)
Lazzara, M, Jezek, K, Scambos, T, MacAyeal, D and Van der Veen, C (1999) On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr., 23(3), 201212 (doi: 10.1080/10889379909377676)
Lenaerts, JT and 6 others (2014) Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J. Clim., 27(12), 46074621 (doi: 10.1175/JCLI-D-13-00579.1)
Lopez, P and 5 others (2010) A regional view of fluctuations in glacier length in Southern South America. Glob. Planet. Change, 71(1), 85108 (doi: 10.1016/j.gloplacha.2009.12.009)
Lüthi, MP and Vieli, A (2016) Multi-method observation and analysis of a tsunami caused by glacier calving. Cryosphere, 10(3), 9951002 (doi: 10.5194/tc-10-995-2016)
MacAyeal, DR and 9 others and others (2006) Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophys. Res. Lett., 33(17), L17502 (doi: 10.1029/2006GL027235)
MacAyeal, DR, Okal, EA, Aster, RC and Bassis, JN (2009) Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves. J. Glaciol., 55(190), 193206 (doi: 10.3189/002214309788608679)
Marchenko, A, Morozov, E and Muzylev, S (2012) A tsunami wave recorded near a glacier front. Nat. Hazard. Earth Syst., 12(2), 415419 (doi: 10.5194/nhess-12-415-2012)
Massel, SR and Przyborska, A (2013) Surface wave generation due to glacier calving. Oceanologia, 55(1), 101127 (doi: 10.5697/oc.55-1.101)
Meier, M and Post, A (1987) Fast tidewater glaciers. J. Geophys. Res. Solid Earth, 92(B9), 90519058 (doi: 10.1029/JB092iB09p09051)
Minowa, M, Sugiyama, S, Sakakibara, D and Skvarca, P (2017) Seasonal variations in ice-front position controlled by frontal ablation at Glaciar Perito Moreno, the Southern Patagonia Icefield. Front. Earth Sci., 5, 1 (doi: 10.3389/feart.2017.00001)
Motyka, RJ, Hunter, L, Echelmeyer, KA and Connor, C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol., 36(1), 5765 (doi: 10.3189/172756403781816374)
Munk, WH, Miller, G, Snodgrass, F and Barber, N (1963) Directional recording of swell from distant storms. Philos. Trans. R. Soc. A, 255(1062), 505584
Naruse, R, Fukami, H and Aniya, M (1992) Short-term variations in flow velocity of Glaciar Soler, Patagonia, Chile. J. Glaciol., 38(128), 152156
Nettles, M and Ekström, G (2010) Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci., 38(1), 467 (doi: 10.1146/annurev-earth-040809-152414)
O'Neel, S, Marshall, H, McNamara, D and Pfeffer, W (2007) Seismic detection and analysis of icequakes at Columbia Glacier, Alaska. J. Geophys. Res. Earth, 112(F3) (doi: 10.1029/2006JF000595)
Petlicki, M and Kinnard, C (2016) Calving of Fuerza Aérea Glacier (Greenwich Island, Antarctica) observed with terrestrial laser scanning and continuous video monitoring. J. Glaciol., 62(235), 835846 (doi: 10.1017/jog.2016.72)
Pettit, EC (2012) Passive underwater acoustic evolution of a calving event. Ann. Glaciol., 53(60), 113122 (doi: 10.3189/2012AoG60A137)
Pettit, EC, Nystuen, JA and O'Neel, S (2012) Listening to glaciers: passive hydroacoustics near marine-terminating glaciers. Oceanography, 25(3), 104105 (doi: 10.5670/oceanog.2012.81)
Pettit, EC and 5 others (2015) Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt. Geophys. Res. Lett., 42(7), 23092316 (doi: 10.1002/2014GL062950)
Podolskiy, EA and Walter, F (2016) Cryoseismology. Rev. Geophys., 54(4), 708758, ISSN 1944-9208 (doi: 10.1002/2016RG000526), 2016RG000526
Rabinovich, AB (1997) Spectral analysis of tsunami waves: separation of source and topography effects. J. Geophys. Res. Oceans, 102(C6), 1266312676 (doi: 10.1029/97JC00479)
Rignot, E, Rivera, A and Casassa, G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science, 302(5644), 434437 (doi: 10.1126/science.1087393)
Rignot, E, Jacobs, S, Mouginot, J and Scheuchl, B (2013) Ice-shelf melting around Antarctica. Science, 341(6143), 266270 (doi: 10.1126/science.1235798)
Röhl, K (2006) Thermo-erosional notch development at fresh-water-calving Tasman Glacier, New Zealand. J. Glaciol., 52(177), 203213 (doi: 10.3189/172756506781828773)
Sakakibara, D and Sugiyama, S (2014) Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J. Geophys. Res. Earth, 119(11), 25412554 (doi: 10.1002/2014JF003148)
Schaefer, M, Machguth, H, Falvey, M, Casassa, G and Rignot, E (2015) Quantifying mass balance processes on the Southern Patagonia Icefield. Cryosphere, 9(1), 2535 (doi: 10.5194/tc-9-25-2015)
Shipton, E (1963) Land of tempest: travels in Patagonia, 1958–62. Hodder and Stoughton, London.
Stuefer, M (1999) Investigations on mass balance and dynamics of Moreno Glacier based on field measurements and satellite imagery. Unpublished PhD dissertation, Universität Innsbruck
Sugiyama, S and 7 others (2016) Thermal structure of proglacial lakes in Patagonia. J. Geophys. Res. Earth, 121, 22702286 (doi: 10.1002/2016JF004084)
Truffer, M and Motyka, RJ (2016) Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings. Rev. Geophys., 54(1), 220239 (doi: 10.1002/2015RG000494)
Trüssel, BL, Motyka, RJ, Truffer, M and Larsen, CF (2013) Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA. J. Glaciol., 59(213), 149161 (doi: 10.3189/2013J0G12J081)
Tsai, VC, Rice, JR and Fahnestock, M (2008) Possible mechanisms for glacial earthquakes. J. Geophys. Res. Earth, 113(F3) (doi: 10.1029/2007JF000944)
van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
Van der Veen, C (2002) Calving glaciers. Prog. Phys. Geogr., 26(1), 96122 (doi: 10.1191/0309133302pp327ra)
Vaňková, I and Holland, DM (2016) Calving signature in ocean waves at Helheim Glacier and Sermilik Fjord, East Greenland. J. Phys. Oceanogr., 46(10) (doi: 10.1175/JPO-D-15-0236.1)
Walter, F, Olivieri, M and Clinton, JF (2013) Calving event detection by observation of seiche effects on the Greenland fjords. J. Glaciol., 59(213), 162178 (doi: 10.3189/2013JoG12J118)
Warren, C and Aniya, M (1999) The calving glaciers of Southern South America. Glob. Planet. Change, 22(1), 5977 (doi: 10.1016/S0921-8181(99)00026-0)
Warren, C, Benn, D, Winchester, V and Harrison, S (2001) Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia. J. Glaciol., 47(156), 135146 (doi: 10.3189/172756501781832403)
Willis, MJ, Melkonian, AK, Pritchard, ME and Rivera, A (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett., 39(17) (doi: 10.1029/2012GL053136)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 33
Total number of PDF views: 258 *
Loading metrics...

Abstract views

Total abstract views: 586 *
Loading metrics...

* Views captured on Cambridge Core between 12th April 2018 - 23rd July 2018. This data will be updated every 24 hours.