Skip to main content
×
×
Home

Glacier-bed characteristics of midtre Lovénbreen, Svalbard, from high-resolution seismic and radar surveying

  • E.C. King (a1), A.M. Smith (a1), T. Murray (a2) and G.W. Stuart (a3)
Abstract

We conducted a seismic and radar survey of the central part of midtre Lovénbreen, a small, polythermal valley glacier in Svalbard. We determined the physical properties of the material beneath the glacier by measuring the reflection coefficient of the bed by comparing the energy of the primary and multiple reflections, and deriving the acoustic impedance. By making reasonable assumptions about the properties of the basal ice, we determined the acoustic impedance of the bed material as (6.78 ± 1.53) × 106 kg m−2 s−1. We interpret the material beneath the glacier to be permafrost with up to 50% ice, and we speculate that the material may be frozen talus similar to a deposit observed directly by others beneath another Svalbard glacier. The implication for midtre Lovénbreen is that the basal material beneath the present glacier is not able to support fast flow. We conclude that midtre Lovénbreen has most likely had limited capability for faster flow in the past, with motion dominated by internal deformation. Midtre Lovénbreen is used as a ‘study glacier’ for the scientific community in Svalbard, and a large number of studies have been based there. Our results show that it cannot be used as an analogue for larger glaciers in Svalbard, having distinct basal boundary conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier-bed characteristics of midtre Lovénbreen, Svalbard, from high-resolution seismic and radar surveying
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier-bed characteristics of midtre Lovénbreen, Svalbard, from high-resolution seismic and radar surveying
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier-bed characteristics of midtre Lovénbreen, Svalbard, from high-resolution seismic and radar surveying
      Available formats
      ×
Copyright
References
Hide All
Arnold, N.S., Rees, W.G., Hodson, A.J. and Kohler, J.. 2006. Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res., 111(F2), F02011. (10.1029/2005JF000426.)
Atre, S.R. and Bentley, C.R.. 1993. Laterally varying basal conditions beneath Ice Streams B and C, West Antarctica. J. Glaciol., 39(133), 507514.
Barrett, P.J. and Froggatt, P.C.. 1978. Densities, porosities and seismic velocities of some rocks from Victoria Land, Antarctica. New Zeal. J. Geol. Geophys., 21(2), 175187.
Birch, F., ed. 1942. Handbook of physical constants. Washington, DC, Geological Society of America.
Bjørnsson, H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332.
Carcione, J.M. and Seriani, G.. 1998. Seismic and ultrasonic velocities in permafrost. Geophys. Prospect., 46(4), 441454.
Dowdeswell, J.A. 1995. Glaciers in the High Arctic and recent environmental change. Philos. Trans. R. Soc. London, Ser. A, 352(1699), 321334.
Dowdeswell, J.A. and 10 others. 1997. The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 48(1), 114.
Fleming, K.M., Dowdeswell, J.A. and Oerlemans, J.. 1997. Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change. Ann. Glaciol., 24, 203210.
Glasser, N.F. and Hambrey, M.J.. 2001. Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. J. Geol. Soc. London, 158(4), 697707.
Hagen, J.O. and Liestøl, O.. 1990. Long-term glacier mass-balance investigations in Svalbard, 1950–88. Ann. Glaciol., 14, 102106.
Hagen, J.O., Melvold, K., Pinglot, F. and Dowdeswell, J.A.. 2003. On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arct. Antarct. Alp. Res., 35(2), 264270.
Hambrey, M.J., Bennett, M.R., Dowdeswell, J.A., Glasser, N.F. and Huddart, D.. 1999. Debris entrainment and transfer in polythermal valley glaciers. J. Glaciol., 45(149), 6986.
Hambrey, M.J. and 7 others. 2005. Structure and changing dynamics of a polythermal valley glacier on a centennial timescale: Midre Lovénbreen, Svalbard. J. Geophys. Res., 110(F1), F01006. (10.1029/2004JF000128.)
Hansen, S. 1999. A photogrammetrical, climate-statistical and geomorphological approach to the post Little Ice Age changes of the Midre Lovénbreen glacier, Svalbard. (Master’s thesis, University of Copenhagen.)
Hjelle, A. 1993. Geology of Svalbard. Oslo, Norsk Polarinstitutt. (Polarhåndbok 7.)
Humlum, O. 2005. Holocene permafrost aggradation in Svalbard. In Harris, C. and Murton, J. B., eds. Cryospheric systems: glaciers and permafrost. London, Geological Society, 119130. (Special Publication 242.)
Humlum, O., Christiansen, H.H. and Juliussen, H.. 2007. Avalanche-derived rock glaciers in Svalbard. Permafrost Periglac. Process, 18(1), 7588.
Jarvis, E.P. and King, E.C.. 1993. The seismic wavefield recorded on an Antarctic ice shelf. J. Seism. Explor., 2(1), 6986.
Jiskoot, H., Murray, T. and Boyle, P.. 2000. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol., 46(154), 412422.
Kohler, J. and 7 others. 2007. Acceleration in thinning rate on western Svalbard glaciers. Geophys. Res. Lett., 34(18), L18502. (10.1029/2007GL030681.)
Kulessa, B. and Murray, T.. 2003. Slug-test derived differences in bed hydraulic properties between a surge-type and non-surge-type Svalbard glacier. Ann. Glaciol., 36, 103109.
Kurfurst, P.J. 1976. Ultrasonic wave measurements on frozen soils at permafrost temperatures. Can. J. Earth Sci., 13(11), 15711576.
Lefauconnier, B. and Hagen, J.O.. 1990. Glaciers and climate in Svalbard: statistical analysis and reconstruction of the Brøggerbreen mass balance for the last 77 years. Ann. Glaciol., 14, 148152.
Lefauconnier, B., Hagen, J.O., Örbæk, J.B., Melvold, K. and Isaksson, E.. 1999. Glacier balance trends in the Kongsfjorden area, western Spitsbergen, Svalbard, in relation to the climate. Polar Res., 18(2), 307313.
Liestøl, O. 1988. The glaciers in the Kongsfjorden area, Spitsbergen. Nor. Geogr. Tidsskr., 42(4), 231238.
Morgan, N.A. 1969. Physical properties of marine sediments as related to seismic velocities. Geophysics, 34(4), 529545.
Murray, T. and Porter, P.R.. 2001. Basal conditions beneath a soft-bedded polythermal surge-type glacier: Bakaninbreen, Svalbard. Quat. Int., 86(1), 103116.
Murray, T. and 6 others. 2000. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13,49113,507.
Rippin, D. and 6 others. 2003. Changes in geometry and subglacial drainage of Midre Lovénbreen, Svalbard, determined from digital elevation models. Earth Surf. Process. Landf., 28(3), 273298.
Robin, G. de Q. 1958. Glaciology III. Seismic shooting and related investigations. In Norwegian–British–Swedish Antarctic Expedition, 1949–52, Scientific Results, Vol. V. Oslo, Norsk Polarinstitutt.
Roethlisberger, H. 1972. Seismic exploration in cold regions. I. CRREL Monogr. II-A2a .
Smith, A.M. 1997. Basal conditions on Rutford Ice Stream, West Antarctica from seismic observations. J. Geophys. Res., 102(B1), 543552.
Smith, A.M., Murray, T., Davison, B.M., Clough, A.F., Woodward, J. and Jiskoot, H.. 2002. Late surge glacial conditions on Bakaninbreen, Svalbard, and implications for surge termination. J. Geophys. Res., 107(B8), 2152. (10.1029/2001JB000475.)
Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A.. 1976. Applied geophysics. Cambridge, etc., Cambridge University Press.
Van de Wal, R.S.W. and Wild, M.. 2001. Modelling the response of glaciers to climate change by applying volume–area scaling in combination with a high resolution GCM. Climate Dyn., 18(3–4), 359366.
Wadham, J., Kohler, J., Hubbard, A., Nuttall, A.-M. and Rippin, D.. 2006. Superimposed ice regime of a high Arctic glacier inferred using ground-penetrating radar, flow modeling, and ice cores. J. Geophys. Res., 111(F1), F01007. (10.1029/2004JF000144.)
Widess, M.B. 1973. How thin is a thin bed? Geophysics, 38(6), 11761180.
Wyllie, M.R.J., Gregory, A.R. and Gardner, L.W.. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1), 4170.
Zelt, C.A. and Smith, R.B.. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 108(1), 1634.
Zimmerman, R.W. and King, M.S.. 1986. The effect of the extent of freezing on seismic velocities in unconsolidated permafrost. Geophysics, 51(6), 12851290.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed