Skip to main content

Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison

  • Frank Pattyn (a1), Laura Perichon (a1), Gaël Durand (a2), Lionel Favier (a2), Olivier Gagliardini (a2) (a3), Richard C.A. Hindmarsh (a4), Thomas Zwinger (a5), Torsten Albrecht (a6) (a7), Stephen Cornford (a8), David Docquier (a1), Johannes J. Fürst (a9), Daniel Goldberg (a10), G. Hilmar Gudmundsson (a4), Angelika Humbert (a11) (a12), Moritz Hütten (a6) (a7), Philippe Huybrechts (a9), Guillaume Jouvet (a13), Thomas Kleiner (a12), Eric Larour (a14), Daniel Martin (a15), Mathieu Morlighem (a15), Anthony J. Payne (a8), David Pollard (a16), Martin Rückamp (a11), Oleg Rybak (a9), Hélène Seroussi (a14), Malte Thoma (a12) and Nina Wilkens (a11)...

Predictions of marine ice-sheet behaviour require models able to simulate grounding-line migration. We present results of an intercomparison experiment for plan-view marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no buttressing effects from lateral drag). Perturbation experiments specifying spatial variation in basal sliding parameters permitted the evolution of curved grounding lines, generating buttressing effects. The experiments showed regions of compression and extensional flow across the grounding line, thereby invalidating the boundary layer theory. Steady-state grounding-line positions were found to be dependent on the level of physical model approximation. Resolving grounding lines requires inclusion of membrane stresses, a sufficiently small grid size (<500 m), or subgrid interpolation of the grounding line. The latter still requires nominal grid sizes of <5 km. For larger grid spacings, appropriate parameterizations for ice flux may be imposed at the grounding line, but the short-time transient behaviour is then incorrect and different from models that do not incorporate grounding-line parameterizations. The numerical error associated with predicting grounding-line motion can be reduced significantly below the errors associated with parameter ignorance and uncertainties in future scenarios.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison
      Available formats
Hide All
Alley, RB and Joughin, I (2012) Modelling ice-sheet flow. Science, 336(6081), 551552 (doi: 10.1126/science.1220530)
Baral, DR, Hutter, K and Greve, R (2001) Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: a critical review and new developments. Appl. Mech. Rev., 54(3), 215256 (doi: 10.1115/1.3097296)
Blatter, H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333344
Bueler, E and Brown, J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res., 114(F3), F03008 (doi: 10.1029/2008JF001179)
Cornford, SL and 8 others (2013) Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys., 232(1), 529549 (doi: 10.1016/
Docquier, D, Perichon, L and Pattyn, F (2011) Representing grounding line dynamics in numerical ice sheet models: recent advances and outlook. Surv. Geophys., 32(4–5), 417435 (doi: 10.1007/s10712-011-9133-3)
Drouet, AS and 6 others (2013) Grounding line transient response in marine ice sheet models. Cryophere, 7(2), 395406 (doi: 10.5194/tc-7-395-2013)
Dupont, TK and Alley, RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32(4), L04503 (doi: 10.1029/2004GL022024)
Durand, G, Gagliardini, O, de Fleurian, B, Zwinger, T and Le Meur, E (2009a) Marine ice-sheet dynamics: hysteresis and neutral equilibrium. J. Geophys. Res., 114(F3), F03009 (doi: 10.1029/2008JF001170)
Durand, G, Gagliardini, O, Zwinger, T, Le Meur, E and Hindmarsh, RCA (2009b) Full Stokes modeling of marine ice sheets: influence of the grid size. Ann. Glaciol., 50(52), 109114 (doi: 10.3189/172756409789624283)
Favier, L, Gagliardini, O, Durand, G and Zwinger, T (2012) A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf. Cryosphere, 6(1), 101112 (doi: 10.5194/tc-6-101-2012)
Gagliardini, O, Cohen, D, Råback, P and Zwinger, T (2007) Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res., 112(F2), F02027 (doi: 10.1029/2006JF000576)
Gagliardini, O, Durand, G, Zwinger, T, Hindmarsh, RCA and Le Meur, E (2010) Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics. Geophys. Res. Lett., 37(14), L14501 (doi: 10.1029/2010GL043334)
Gillet-Chaulet, F and 8 others (2012) Greenland Ice Sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere, 6, 27892826 (doi: 10.5194/tc-6-1561-2012)
Gladstone, RM, Lee, V, Vieli, A and Payne, AJ (2010a) Grounding line migration in an adaptive mesh ice sheet model. J. Geophys. Res., 115(F4), F04014 (doi: 10.1029/2009JF001615)
Gladstone, RM, Payne, AJ and Cornford, SL (2010b) Parameterising the grounding line in flow-line ice sheet models. Cryosphere, 4(4), 605619 (doi: 10.5194/tc-4-605-2010)
Gladstone, RM and 9 others (2012) Calibrated prediction of Pine Island Glacier retreat during the 21st and 22nd centuries with a coupled flowline model. Earth Planet. Sci. Lett., 333–334, 191199 (doi: 10.1016/j.epsl.2012.04.022)
Goldberg, DN, Holland, DM and Schoof, CG (2009) Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res., 114(F4), F04026 (doi: 10.1029/2008JF001227)
Goldberg, DN, Little, CM, Sergienko, OV, Gnanadesikan, A, Hallberg, R and Oppenheimer, M (2012a) Investigation of land ice–ocean interaction with a fully coupled ice–ocean model: 1. Model description and behavior. J. Geophys. Res., 117(F2), F02037 (doi: 10.1029/2011JF002246)
Goldberg, DN, Little, CM, Sergienko, OV, Gnanadesikan, A, Hallberg, R and Oppenheimer, M (2012b) Investigation of land ice–ocean interaction with a fully coupled ice–ocean model: 2. Sensitivity to external forcings. J. Geophys. Res., 117(F2), F02038 (doi: 10.1029/2011JF002247)
Gudmundsson, GH, Krug, J, Durand, G, Favier, L and Gagliardini, O (2012) The stability of grounding lines on retrograde slopes. Cryosphere, 6(6), 14971505 (doi: 10.5194/tc-6-1497-2012)
Hellmer, H, Kauker, F, Timmermann, R, Determann, J and Rae, J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485(7397), 225228 (doi: 10.1038/nature11064)
Hindmarsh, RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J. Geophys. Res., 109(F1), F01012 (doi: 10.1029/2003JF000065)
Hindmarsh, RCA (2006) The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic Ice Sheets: back pressure and grounding line motion. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 17331767 (doi: 10.1098/rsta.2006.1797)
Hindmarsh, RCA (2012) An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. J. Glaciol., 58(208), 375387 (doi: 10.3189/2012JoG11J206)
Hindmarsh, RCA and Le Meur, E (2001) Dynamical processes involved in the retreat of marine ice sheets. J. Glaciol., 47(157), 271282 (doi: 10.3189/172756501781832269)
Hindmarsh, RCA, Morland, LW, Boulton, GS and Hutter, K (1987) The unsteady plane flow of ice-sheets: a parabolic problem with two moving boundaries. Geophys. Astrophys. Fluid Dyn., 39(3), 183225 (doi: 10.1080/03091928708208812)
Hutter, K (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D. Reidel, Dordrecht/Terra Scientific, Tokyo
Huybrechts, P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Climate Dyn., 5(2), 7992
Huybrechts, P, Payne, T and the EISMINT Intercomparison Group (1996) The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 112
Larour, E, Seroussi, H, Morlighem, M and Rignot, E (2012) Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F1), F01022 (doi: 10.1029/2011JF002140)
Lythe, MB, Vaughan, DG and BEDMAP consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11 33511 351 (doi: 10.1029/2000JB900449)
MacAyeal, DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res., 94(B4), 40714087 (doi: 10.1029/JB094iB04p04071)
Morland, LW (1987) Unconfined ice-shelf flow. In Van der Veen, CJ and Oerlemans, J eds. Dynamics of the West Antarctic ice sheet. D. Reidel, Dordrecht, 99116
Morlighem, M, Rignot, E, Seroussi, H, Larour, E, Ben Dhia, H and Aubry, D (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(14), L14502 (doi: 10.1029/2010GL043853)
Nowicki, SMJ and Wingham, DJ (2008) Conditions for a steady ice sheet–ice shelf junction. Earth Planet. Sci. Lett., 265(1–2), 246255 (doi: 10.1016/j.epsl.2007.10.018)
Pattyn, F (2003) A new three-dimensional higher-order thermomechanical ice-sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res.,108(B8), 2382 (doi: 10.1029/2002JB002329)
Pattyn, F, Huyghe, A, de Brabander, S and De Smedt, B (2006) Role of transition zones in marine ice sheet dynamics. J. Geophys. Res., 111(F2), F02004 (doi: 10.1029/2005JF000394)
Pattyn, F and 20 others (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere, 2(2), 95108 (doi: 10.5194/tc-2-95-2008)
Pattyn, F and 18 others (2012) Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. Cryosphere, 6(3), 573588 (doi: 10.5194/tc-6-573-2012)
Pollard, D and DeConto, RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329332 (doi: 10.1038/nature07809)
Pollard, D and DeConto, RM (2012) Description of a hybrid ice sheet– shelf model, and application to Antarctica. Geosci. Model Dev. Discuss., 5(2),10771134 (doi: 10.5194/gmdd-5-1077-2012)
Pritchard, HD, Ligtenberg, SRM, Fricker, HA, Vaughan, DG, Van den Broeke, MR and Padman, L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502505 (doi: 10.1038/nature10968)
Ritz, C, Rommelaere, V and Dumas, C (2001) Modeling the evolution of Antarctic ice sheet over the last 420 000 years: implications for altitude changes in the Vostok region. J. Geophys. Res., 106(D23), 31 94331 964 (doi: 10.1029/2001JD900232)
Schoof, C (2005) The effect of cavitation on glacier sliding. Proc. R. Soc. London, Ser. A, 461(2055), 609627 (doi: 10.1098/rspa.2004.1350)
Schoof, C (2007a) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Schoof, C (2007b) Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech., 573, 2755 (doi: 10.1017/S0022112006003570)
Schoof, C (2011) Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. J. Fluid Mech., 679, 122155 (doi: 10.1017/jfm.2011.129)
Schoof, C and Hindmarsh, RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math., 63(1), 73114 (doi: 10.1093/qjmam/hbp025)
Solomon, S and 7 others eds. (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Thoma, M, Grosfeld, K, Mayer, C and Pattyn, F (2010) Interaction between ice sheet dynamics and subglacial lake circulation: a coupled modelling approach. Cryosphere, 4(1), 112 (doi: 10.5194/tc-4-1-2010)
Thoma, M, Grosfeld, K, Mayer, C and Pattyn, F (2012) Ice-flow sensitivity to boundary processes: a coupled model study in the Vostok Subglacial Lake area, Antarctica. Ann. Glaciol. , 53(60 Pt 2), 173180 (doi: 10.3189/2012AoG60A009)
Weertman, J (1957) Deformation of floating ice shelves. J. Glaciol., 3(21), 3842
Winkelmann, R and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description. Cryosphere, 5(3), 715726 (doi: 10.5194/tc-5-715-2011)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 20
Total number of PDF views: 75 *
Loading metrics...

Abstract views

Total abstract views: 252 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 20th April 2018. This data will be updated every 24 hours.