Skip to main content
    • Aa
    • Aa

High variability of climate and surface mass balance induced by Antarctic ice rises

  • Jan T.M. Lenaerts (a1), Joel Brown (a2), Michiel R. Van Den Broeke (a1), Kenichi Matsuoka (a2), Reinhard Drews (a3), Denis Callens (a3), Morgane Philippe (a3), Irina V. Gorodetskaya (a4), Erik Van Meijgaard (a5), Carleen H. Reijmer (a1), Frank Pattyn (a3) and Nicole P.M. Van Lipzig (a4)...

Ice rises play key roles in buttressing the neighbouring ice shelves and potentially provide palaeoclimate proxies from ice cores drilled near their divides. Little is known, however, about their influence on local climate and surface mass balance (SMB). Here we combine 12 years (2001–12) of regional atmospheric climate model (RACMO2) output at high horizontal resolution (5.5 km) with recent observations from weather stations, ground-penetrating radar and firn cores in coastal Dronning Maud Land, East Antarctica, to describe climate and SMB variations around ice rises. We demonstrate strong spatial variability of climate and SMB in the vicinity of ice rises, in contrast to flat ice shelves, where they are relatively homogeneous. Despite their higher elevation, ice rises are characterized by higher winter temperatures compared with the flat ice shelf. Ice rises strongly influence SMB patterns, mainly through orographic uplift of moist air on the upwind slopes. Besides precipitation, drifting snow contributes significantly to the ice-rise SMB. The findings reported here may aid in selecting a representative location for ice coring on ice rises, and allow better constraint of local ice-rise as well as regional ice-shelf mass balance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High variability of climate and surface mass balance induced by Antarctic ice rises
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      High variability of climate and surface mass balance induced by Antarctic ice rises
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      High variability of climate and surface mass balance induced by Antarctic ice rises
      Available formats
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

RB Alley , DD Blankenship , ST Rooney and CR Bentley (1989) Sedimentation beneath ice shelves – the view from Ice Stream B. Mar. Geol., 85(2–4), 101120 (doi: 10.1016/0025–3227(89) 90150–3)

RJ Arthern , DP Winebrenner and DG Vaughan (2006) Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission. J. Geophys. Res., 111(D6), D06107 (doi: 10.1029/2004JD005667)

RJ Arthern , DG Vaughan , AM Rankin , R Mulvaney and ER Thomas (2010) In situ measurements of Antarctic snow compaction compared with predictions of models. J. Geophys. Res., 115(F3), F03011 (doi: 10.1029/2009JF001306)

JL Bamber , JL Gomez-Dans and JA Griggs (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3(1), 101111 (doi: 10.5194/tc-3–101–2009)

RA Bindschadler , EP Roberts and A Iken (1990) Age of Crary Ice Rise, Antarctica, determined from temperature–depth profiles. Ann. Glaciol., 14, 1316

R Bindschadler and 17 others (2011) Getting around Antarctica: new high-resolution mappings of the grounded and freely floating boundaries of the Antarctic ice sheet created for the International Polar Year. Cryosphere, 5(3), 569588 (doi: 10.5194/tc-5–569–2011)

H Conway , BL Hall , GH Denton , AM Gades and ED Waddington (1999) Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286(5438), 280283 (doi: 10.1126/science.286.5438.280)

DP Dee and S Uppala (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc., 135(644), 18301841 (doi: 10.1002/qj.493)

MA Depoorter and 6 others (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502(7469), 8992 (doi: 10.1038/nature12567)

R Drews , W Rack , C Wesche and V Helm (2009) A spatially adjusted elevation model in Dronning Maud Land, Antarctica, based on differential SAR interferometry. IEEE Trans. Geosci. Remote Sens., 47(8), 25012509 (doi: 10.1109/TGRS.2009.2016081)

R Drews , C Martín , D Steinhage and O Eisen (2013) Characterizing the glaciological conditions at Halvfarryggen ice dome, Dronning Maud Land, Antarctica. J. Glaciol., 59(213), 920 (doi: 10.3189/2013JoG12J134)

O Eisen and 15 others (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev. Geophys., 46(RG2), RG2001 (doi: 10.1029/2006RG000218)

J Ettema , MR Van den Broeke , E Van Meijgaard , WJ Van de Berg , JE Box and K Steffen (2010) Climate of the Greenland ice sheet using a high-resolution climate model: Part 1: evaluation. Cryosphere, 4(4), 511527 (doi: 10.5194/tc-4–511–2010)

F Fernandoy , H Meyer , H Oerter , F Wilhelms , W Graf and J Schwander (2010) Temporal and spatial variation of stable-isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica. J. Glaciol., 56(198), 673687 (doi: 10.3189/002214310793146296)

HA Fricker , R Coleman , L Padman , TA Scambos , J Bohlander and KM Brunt (2009) Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct. Sci., 21(5), 515532 (doi: 10.1017/S095410200999023X)

IV Gorodetskaya and 6 others (2014a) Cloud and precipitation properties from ground-based remote sensing instruments in East Antarctica. Cryos. Discuss., 8, 41954241 (doi: 10.5194/tcd-8–4195–2014)

IV Gorodetskaya , M Tsukernik , K Claes , MF Ralph , WD Neff and NPM Van Lipzig (2014b) The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41(17), 61996206 (doi: 10.1002/2014GL060881)

V Helm , A Humbert and H Miller (2014) Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere, 8(4), 15391559 (doi: 10.5194/tc-8–1539–2014)

HJ Horgan and S Anandakrishnan (2006) Static grounding lines and dynamic ice streams: evidence from the Siple Coast, West Antarctica. Geophys. Res. Lett., 33(18), L18502 (doi: 10.1029/2006GL027091)

B Hubbard and 6 others (2013) Ice shelf density reconstructed from optical televiewer borehole logging. Geophys. Res. Lett., 40(22), 58825887 (doi: 10.1002/2013GL058023)

T Hughes (1977) West Antarctic ice streams. Rev. Geophys. Space Phys., 15(1), 146 (doi: 10.1029/RG015i001p00001)

A Jenkins and 6 others (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci., 3(7), 468472 (doi: 10.1038/ngeo890)

KC Jezek and CR Bentley (1983) Field studies of bottom crevasses in the Ross Ice Shelf, Antarctica. J. Glaciol., 29(101), 118126

JC King , PS Anderson , DG Vaughan , GW Mann , SD Mobbs and SB Vosper (2004) Wind-borne redistribution of snow across an Antarctic ice rise. J. Geophys. Res., 109(D11), D11104 (doi: 10.1029/2003JD004361)

T Kleiner and A Humbert (2014) Numerical simulations of major ice streams in western Dronning Maud Land, Antarctica, under wet and dry basal conditions. J. Glaciol., 60(220), 215232 (doi: 10.3189/2014JoG13J006)

P Kuipers Munneke , MR Van den Broeke , JTM Lenaerts , MG Flanner , AS Gardner and WJ Van de Berg (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res., 116(D5), D05114 (doi: 10.1029/2010JD015113)

JTM Lenaerts , MR Van den Broeke , WJ Van de Berg , E Van Meijgaard and Kuipers P Munneke (2012a) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713)

JTM Lenaerts and 6 others (2012b) Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res., 117(D5), D05108 (doi: 10.1029/2011JD016145)

JTM Lenaerts , E Van Meijgaard , MR Van den Broeke , SRM Ligtenberg , M Horwath and E Isaksson (2013) Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett., 40(11), 26842688 (doi: 10.1002/grl.50559)

JTM Lenaerts and 6 others (2014) Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J. Climate, 27(12), 46074621 (doi: 10.1175/JCLI-D-13–00579.1)

H Looyenga (1965) Dielectric constant of heterogeneous mixtures. Physica, 31(3), 401406 (doi: 10.1016/0031–8914(65)90045–5)

C Martín , RCA Hindmarsh and FJ Navarro (2006) Dating ice flow change near the flow divide at Roosevelt Island, Antarctica, by using a thermomechanical model to predict radar stratigraphy. J. Geophys. Res., 111(F1), F01011 (doi: 10.1029/2005JF000326)

C Martín , GH Gudmundsson and EC King (2014) Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia. J. Glaciol., 60(219), 139146 (doi: 10.3189/2014JoG13J089)

SY Matrosov (2007) Modeling backscatter properties of snow fall at millimeter wavelengths. J. Atmos. Sci., 64(5), 17271736 (doi: 10.1175/JAS3904.1)

K Matsuoka , F Pattyn , D Callens and H Conway (2012) Radar characterization of the basal interface across the grounding zone of an ice-rise promontory in East Antarctica. Ann. Glaciol., 53(60 Pt 1), 2944 (doi: 10.3189/2012AoG60A106)

C Miège and 6 others (2013) Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar. Ann. Glaciol., 54(63 Pt 2), 322332 (doi: 10.3189/2013AoG63A358)

NA Nereson and ED Waddington (2002) Isochrones and isotherms beneath migrating ice divides. J. Glaciol., 48(160), 95108 (doi: 10.3189/172756502781831647)

D Noone , J Turner and R Mulvaney (1999) Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J. Geophys. Res., 104(D16), 19 191–19 211 (doi: 10.1029/1999JD900376)

F Pattyn and 8 others (2012) Melting and refreezing beneath Roi Baudouin Ice Shelf (East Antarctica) inferred from radar, GPS, and ice core data. J. Geophys. Res., 117(F4), F04008 (doi: 10.1029/2011JF002154)

CH Reijmer and MR Van den Broeke (2001) Moisture sources of precipitation in western Dronning Maud Land, Antarctica. Antarct. Sci., 13(2), 210220 (doi: 10.1017/S0954102001000293)

E Rignot , S Jacobs , J Mouginot and B Scheuchl (2013) Ice shelf melting around Antarctica. Science, 341(6143), 266270 (doi: 10.1126/science.1235798)

TA Scambos , TM Haran , MA Fahnestock , TH Painter and J Bohlander (2007) MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242257 (doi: 10.1016/j. rse.2006.12.020)

E Schlosser , KW Manning , JG Powers , MG Duda , G Birnbaum and K Fujita (2010) Characteristics of high-precipitation events in Dronning Maud Land, Antarctica. J. Geophys. Res., 115(D14), D14107 (doi: 10.1029/2009JD013410)

VB Spikes , GS Hamilton , SA Arcone , S Kaspari and P Mayewski (2004) Variability in accumulation rates from GPR profiling on the West Antarctic plateau. Ann. Glaciol., 39, 238244 (doi: 10.3189/172756404781814393)

WJ Van de Berg , MR Van den Broeke , CH Reijmer and E Van Meijgaard (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495)

MR Van den Broeke , D Van As , CH Reijmer and RSW Van de Wal (2004) The surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res., 109(D9), D09103 (doi: 10.1029/2003JD004394)

M Van den Broeke , WJ Van de Berg and van E Meijgaard (2006) Snowfall in coastal West Antarctica much greater than previously assumed. Geophys. Res. Lett., 33(2), L02505 (doi: 10.1029/2005GL025239)

NPM Van Lipzig , JC King , T Lachlan-Cope and MR Van den Broeke (2004) Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res., 109(D24), D24106 (doi: 10.1029/2004JD004701)

JM Van Wessem , CH Reijmer , JTM Lenaerts , WJ Van de Berg , MR Van den Broeke and E Van Meijgaard (2014) Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere, 8(1), 125135 (doi: 10.5194/tc-8–125–2014)

ED Waddington , TA Neumann , MR Koutnik , H-P Marshall and DL Morse (2007) Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets. J. Glaciol., 53(183), 694712 (doi: 10.3189/002214307784409351)

C Wesche , S Riedel and D Steinhage (2009) Precise surface topography of the grounded ice ridges at the Ekströmisen, Antarctica, based on several geophysical data sets. ISPRS J. Photogramm. Remote Sens., 64(4), 381386 (doi: 10.1016/j. isprsjprs.2009.01.005)

R Winkelmann , A Levermann , MA Martin and K Frieler (2012) Increased future ice discharge from Antarctica owing to higher snowfall. Nature, 492(7428), 239242 (doi: 10.1038/nature11616)

AP Wright and 9 others (2013) Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation. Cryos. Discuss., 7(6), 54755508 (doi: 10.5194/tcd-7–5475–2013)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 15 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 21st September 2017. This data will be updated every 24 hours.